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1. FOREWORD

This document provides information concerning development for the Air Force contract
#F33615-98-C-3208 titled Air Vehicle Configuration. The Air Force Research
Laboratory / Air Vehicle program monitor in this effort is Dr. Max Blair. TechnoSoft
Inc. (TSI) provided the contracted effort as a prime contractor with Purdue University
(PU) and Samara State University (SSU) serving as subcontractors. The Principle
Investigators were as follows:

TSI:  Adel Chemaly,
PU:  Dr. Terrence Weisshaar,
SSU: Dr. Alexander Danilin and Dr. Valery Komarov.

The objective of this research was to develop a comprehensive design environment and
framework for modeling and simulating aircraft systems that seamlessly integrates
different engineering processes. This framework for Air Vehicle Configuration (AVC)
covers not only the accurate definition of the external shape on which lift and drag
depend, but it also includes the preliminary sizing of structural elements that tend to drive
the weight of the vehicle and tend to influence the size of critical loads.




2. Summary

The repetitive, iterative nature of air vehicle design and the conflicting requirements for
performance and affordability present a challenge to provide a comprehensive design
system to integrate the various engineering stages. Capturing and modeling the
engineering philosophies as related to the design evolution from concept to production
details must be done to enable quick response to changes in designs, materials, and
processes. Automating and integrating the various engineering cycles will speed the
design process and provide high fidelity guidance for designers to interact across
disciplinary barriers and to assess viability of the design and to define and to reduce
economic risk. This document reports work performed regarding the aforementioned
topics under Air Force STTR contract #F33615-98-C-3208 titled Air Vehicle
Configuration.

The methodology of the developed AML modules is explained and documentation for the
AML modules is given in the Appendices. The effort included integrating basic
structural design capability into the AML aircraft design code being developed by
Technosoft. Dr. Danilin worked with TechnoSoft personnel to integrate his DRACO
code as part of the AML modules. The Appendices also include a summary of the finite
element type used by Dr. Danilin in his AML work at TechnoSoft and a paper written by
Dr. Weisshaar, based upon Dr. Danilin’s work in design, in which the AML procedure is
mentioned. The paper written by Dr. Weisshaar was presented at the 40™ AIAA/
Structural Dynamics and Materials Conference in Atlanta, Georgia in April 2000.

TechnoSoft, Purdue, and Dr. Danilin demonstrated examples of the technology to the Air
Force Research Laboratory personnel in August 1999 with a sample fuselage bulkhead
and wing design. Dr. Danilin and Dr. Komarov also submitted a description of their
special sandwich element as required and also made themselves available for
consultation.

Professor Weisshaar provided services while Dr. Danilin was in this country. He also
helped in preparation of the final report and helped present results that showed the
versatility of the methods used by AML.

3. Design Architecture and Framework

The objective of this research was the development of a comprehensive design
environment and framework for modeling and simulating aircraft systems that seamlessly
integrates different engineering processes. This framework covers not only the accurate
definition of the external shape on which lift and drag depend and the arrangement of
internal contents in a straightforward manner, but it also includes the preliminary sizing
of structural elements that tend to drive the weight of the vehicle and tend to influence the
size of critical loads.
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Figure 1: Design Process

Based on the Adaptive Modeling Language (AML), the system’s framework supports a
single underlying object-oriented architecture with demand-driven computation and
dependency tracking that allows information to feed forward and backward among the
various design levels and engineering processes as the design evolves as shown in Figure
1.

The system architecture is based on a modular framework; each module focuses on an
engineering discipline or component design application. This supports the seamless
integration of various tools and applications in the aircraft design process. An appealing
feature of this architecture allows design tools to evolve or be updated without requiring
changes to the interface within the architecture. Multiple tools may be made available to
the designer that serve the same purpose. This will allow designers to select the
appropriate level of analysis for their particular task. It will also allow for mixed design
modes, with some analyses performed at a low-order conceptual level while others are
done at a high fidelity, preliminary level.

The framework has two foci:

1) Constructing and linking together conceptual, preliminary, and detailed models,
2) Seamlessly integrating engineering processes and tools.

A limited prototype was developed to illustrate the design process; this prototype focuses
on wing structure conceptual and preliminary design and analysis and its use was
demonstrated. Preliminary versions of two modules were implemented. These modules
focus on early geometric configurations and preliminary structural and aerodynamic
analyses.

4. Technical Approach

The modeling of the air vehicle considered during the effort focused on the fuselage,
inlets, and wing structure. This research/development effort produced a system
framework, architecture, and a set of development modules to model and link strategies
and engineering processes involved in aircraft conceptual and preliminary design. The
framework provides an architecture and modules supporting an engineering environment




for the conceptual design, configuration, and first-order analysis of an air vehicle system.
In addition, the system modules enable the modeling and automation of important
engineering analysis processes to follow the design evolution from the conceptual to the
preliminary stages. As a result, the system modules provide not only the basic capability
for the conceptual design of an air vehicle, but also allow the design team to proceed to
the design definition at a high level of fidelity, consistent with the requirements of major
vehicle components and engineering analysis processes.

The framework involves a combination of low-level classes/methods/functions for air
vehicle design, a common computational model for these classes, and an encompassing
hierarchy for the classes to be used (instantiated) into an end-user environment. The
following domain-specific modules have been developed:

1. Geometry/Component configuration builder and complex surface modeler
2. Finite element interface to Patran and innate panel-based mesher

3. Structural analysis interface with Dracon

4. Aerodynamic analysis interfaces

Following an elaboration on the underlying AML framework, each of these modules is
described in the following sections along with a sample end-user environment
demonstrating their use in an integrated framework for air vehicles. AML developer
documentation is provided in the Appendices for several of these modules.

4.1, AML Framework

This work is based on the Adaptive Modeling Language (AML), offered commercially by
TechnoSoft Inc., for knowledge-based concurrent engineering and comprehensive
modeling that integrates design specifications, part geometry and features, manufacturing,
inspection, and analysis processes in a unified part model. AML provides a KBE
framework that captures knowledge from the modeled domain and creates parametric
models with that knowledge. Classes inheriting from AML primitives may be defined
and methods may be written against these classes providing user-defined behavior. After
defining the classes, a hierarchical part model is initiated where the attributes of objects
can be related using constraints. This part model may be used as a parametric design in a
“what-if" scenario by changing design parameters and re-computing the model as the
changes are propagated through the model on demand. In addition, AML is
dimensionless and may be adapted to support any dimension units.

Various aspects of a problem can be detailed through a single unified model in AML. An
example of such an application is structural design. A geometric design is created and
various physical attributes are associated with the geometry. Then, the attributes for a
finite element mesh and the knowledge required for generating input files for analysis is




maintained. AML allows this information to be stored in a single structured model. A
complete user interface for the problem including input and output forms, menus, etc.,
can also be associated with the same part model that encompasses the various aspects of
the application. The paradigm provides a common interface to a number of solid
modelers in addition to different mesh generators and FEA solvers. The virtual layer
interface provides a common, consistent interface to achieve this.

The proposed system is composed of several AML modules (sets of classes and methods)
relating to the different knowledge domains and each performing a different function as
required by the various engineering disciplines. All the modules in the system can be
integrated within the AML object-oriented architecture through the Common
Computational Model (CCM - see following paragraphs for further explanation),
although they may communicate with external programs through the virtual layers. Since
AML is modular, only the necessary systems need to be loaded into AML. Hence, if a
problem requires a modeling framework but no graphics or geometry, only the kernel
needs to be loaded for that application. Applications invoking different aspects of the
proposed system built in AML use a common user interface to the system. Hence, user
familiarization is required only with one interface irrespective of the applications.

The lowest level AML object provides the language constructs for defining classes,
methods, and functions, as well as the creation of objects, constraints, and a tree
hierarchy. All subsequent objects augment the language. A part/sub-part relation enables
the creation of a tree-structured unified model where the children of any node of the tree
represent sub-objects thus creating an organized data hierarchy. Various aspects of the
problem can be structured hierarchically according to the domain being modeled (design,
analysis, manufacturing, and inspection).

Each portion of this hierarchy supports AML’s underlying constraint mechanism and
demand-driven/dependency-backtracking behavior. Demand-driven means that the value
of a property is not calculated until it is required (demanded). Until a value is demanded,
an internal flag refers to the property’s value as being unbound or the property as being
smashed. Hence several properties that affect another property can be modified, but the
affected property is not recalculated with each change; only when needed (demanded).
Dependency tracking is the mechanism that propagates constraint changes throughout the
part model. When a property is modified, all the properties it effects become unbound or
smashed (not currently valid). When a property is smashed, it further smashes all
properties that it effects, hence propagating the change by notifying entities that they need
to be recalculated when next demanded.

Various applications of AML, including CAD, layout and configuration, CAM, and
FEM/FEA, have different geometric requirements. These individual requirements are
satisfied by augmenting the part model for different representations in order to satisfy the
demands of various applications. These different representations are manipulated through
a unified part model. AML presents a number of objects or classes for modeling complex
geometrical operations in addition to simple primitives. Complex operations for mixed-
dimensional solid/surface/wire frame Booleans, incorporating non-manifold topology, are




also supported. Additional objects for advanced modeling of free-form surfaces
(NURBS, Beziers, etc.) are also available. The system supports IGES, STEP, and DXF
interfaces to/from external CAD systems along with various graphic visualizations and
geometric reasoning techniques.

AML provides a complete set of Graphical User Interface (GUI) classes, including forms,
buttons, radio boxes, check boxes, input forms, and pop-up menus supported on
Unix/Motif and Windows platforms. Since the user interface model is represented using
the same knowledge representation system and syntax as the rest of the application, it too
1s dynamic in nature and the attributes of user interface entities can be altered dynamically
depending on the model's state.

AML allows the integration for modules or programs that run outside of AML (external
codes), through the use of wrapping objects and functions to allow for their access. The
modules for conceptual design, geometry, and many of the first-order analyses were
written directly in AML and integrated with external codes through AML’s foreign
function interface.

4.2. Geometry/Component configuration builder and Complex surface modeler

A major goal of the effort was the development and implementation of an engineering
framework architecture that enables the layout, configuration and sizing of the major
aircraft components. The focus was on a generic suite of classes and functionality to
enable the designer to create and configure components in an organized fashion. This can
then be applied specifically to a fuselage, wings, inlets, engines, and payload for example.

The implemented architecture serves as part of the AML object-oriented framework
supporting a sophisticated interactive 3D graphical system that enables the manipulation
of the sizing and position of vehicle components. The system also incorporates a 3D
visualizer with support for high-end graphic functionality including interactive rotation,
zooming, and rendering. The system enables the conceptual modeling of the vehicle
using a layout of the vehicle’s outer skin for a fuselage and wing using a series of
constrained cross-sections and reference coordinate systems. These cross-sections’
dimensions and orientations are dependent on certain conceptual vehicle parameters and
additional user input. The system enables easy referencing and parametric association for
feature properties that could be linked to external processes as a part of the virtual layer
interface.

For layout and configuration, components may be placed anywhere within the model and
their positions can be specified relative to other components or to the aircraft coordinate
frame. Each component may have its own coordinate frame. Once the positions and
orientations are specified and their dependencies set, moving the reference component
will update the position of any dependent components. For example, some components,
such as fuel tanks and ducts, can be specified by connecting cross-sections. These cross-
sections are placed in the same manner as other components (using relative positions). In
addition, the cross-sections of pre-existing components may be used. If any of the cross-




sections move (due to the changing position or size of the components to which they are
anchored), then the duct-like components will automatically adjust.

Once the components are placed, their outer boundaries can be used to establish the
constraints on the construction of the fuselage outer skin. Minimum clearance constraints
can be imposed for sizing the outer surface model to allow for the subsystem layout and

substructure sizing.

The wing geometry can be handled with the same type of cross-section configuration as
the fuselage. In this case, the cross-sections can be airfoils. The wings are placed in the
aircraft in the same way as fuselage components. The wings are divided into portions
with each portion described by a root and tip airfoil and the wing can have properties such
as twist, dihedral, and sweep.

The wing geometry can be handled with the same type of cross-section configuration as
the fuselage. In this case, the cross-sections can be airfoils. The wings are placed in the
aircraft in the same way as fuselage components. The wings are divided into portions
with each portion described by a root and tip airfoil and the wing can have properties such
as twist, dihedral, and sweep.

To better illustrate the process of building vehicle components an example of how a
fuselage is constructed is described in the following paragraphs.

The user of the system specifies some basic fuselage properties (type of nose, length of
nose, radius at nose, curvature at nose, ...). Using these properties a set of construction
cross-sections and of scaling curves is generated. The cross-sections and the scaling
curves are used to construct the fuselage’s outer mold surface. The outer mold surface
geometry contains mesh data that can be used to generate aero decks used by aero
analysis codes. The strategy described above is used to build the wings and tails, and can

be used to build any component geometry.
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Figure 2: Fuselage Design

By defining the fuselage parameters the system automatically generates the cross-sections
and the scaling curves as shown in Figure 2.

Figure 3: Fuselage Surface

Using the cross-sections and the scaling curves TechnoSoft Inc. has developed an
effective and easy methodology for building a surface.
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Figure 4: Mesh Surface

In addition to the outer mold surface, a quad mesh is generated as seen in Figure 4
allowing the user to generate data that can be used by the aero analysis codes.

For a list of AML functionality available in this module, please see Appendix 1.

4.3. Finite element interface to Patran and innate panel-based mesher

AML contains classes for attribute tagging and propagation to facilitate the association of
information with entities in a geometric model. This information typically needs to be
conveyed to downstream processes (manufacturing, inspection, meshing, or analysis). In
a parametric modeling environment, reconfiguring a model involves modifying
parameters at the construction level and regenerating the geometric model. Hence, all
supplementary information would need to be conveyed to the final model as well as
downstream processes every time the model is reconfigured. First, using attribute
tagging, supplementary information is associated with configurable construction
geometry. Next, every downstream operation, including final design, analysis, and
manufacturing, has the information passed on through attribute propagation.

As a result, when the model is reconfigured (i.e., upstream design entities are modified in
geometric or other properties), the attribute propagation mechanism ensures that
supplementary information is passed downstream automatically. The attribute tagging
and propagation mechanism is integrated with the demand-driven and backward-
propagation mechanism using event properties.

The automatic mesh generation system is an AML module that allows tight integration of
various mesh generation and analysis applications. The system provides a virtual
interface to support various third-party mesh generators. The system permits selection of
the geometry to mesh, tagging the vertices, edges, and faces of geometry for selective
refinement of the mesh, and meshing the geometry by calling the external mesh generator.
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It provides objects for meshing, as well as a user interface along with methods and a user
interface for visualizing the mesh by querying the mesh database created by the mesh
generator. This effort has extended AML’s virtual layer interface to link with MSC’s
Patran mesher. Through the attribute tagging objects, attributes can be attached to the
edges to initiate the seeding of the mesh. When changes are made to the model geometry,
the finite element geometric model and all topology are automatically regenerated with all
the appropriate meshing attributes, which is then passed on to the Patran mesh.
Implementation focused on surface meshing since the finite element model requirement
for the analysis of the air vehicle skins and substructure is completely made of shell
elements.

Included in this new interface is the finite element analysis (FEA) system that enables the
definition of an analysis problem by defining regions of interest, material models,
solution strategies and other requirements for analyzing various problems using Patran
and a finite element solver such as Nastran or Dracon. Various air vehicle components
are modeled as AML classes that can be used to initiate a complete FEA problem model.
The problem can be associated with the geometric objects as well as the mesh. The
system generates several files that the solver can read and execute to generate results.
Additionally, this system is modular and can be extended to provide a virtual solver layer
that can talk to various other FEA solvers.

TechnoSoft has also created several innate paving algorithms within the framework
architecture to automate the complete quad-panel mesh paving process. Classes have
been developed to enable the user to model the strategy for the quad-panel models based
on the parametric feature-based geometry and its associated material model. The quad-
based finite element model is then automatically generated including all input for
boundary conditions, loads distribution, etc., as required for a panel-based solver such as
PANAIR.

For a list of AML functionality available in this module, please see Appendices 1 and 4.

4.4. Structural analysis interface with Dracon

The conceptual designer often relies on previous experience to ensure that sufficient
space is provided for required structural members. Many times, the only consideration of
structures during the conceptual design phase is related to weight estimation. This is not
really structural design and this process subjects the conceptual design phase to undue
risk. The statistical methods usually used in conceptual design stages limit design
creativity and do not permit low risk investigation of radical new designs using new
materials and manufacturing processes. In this system, the consideration of analysis
includes a first-order analysis of critical loads and use of these loads to perform initial
structural analysis for preliminary structural sizing and weight estimation.

Purdue and its partner Samara State worked with TechnoSoft to add functional capability
to the AML code by developing a finite element analysis mtegration with the Dracon
finite element solver and optimizer as well as a library of design elements that support
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both low order modeling and cost/weight optimization at the conceptual level along with
high fidelity modeling and cost/weight optimization at the preliminary design level. This
modeling includes the ability to define the structural geometry/topology, its weight and
stiffness, and to assess the quality of the aero/structural design. The models and methods
used are proven techniques that have been developed scientifically overseas, but have not
been captured in an effective way until now. The team examined computational issues
and new scientific theories to develop numerical procedures to enable these techniques to
be used with confidence in the AML environment.

The first-order analysis methods enable the initial layout of overall configuration and the
sizing of substructures such as wings and bulkheads. Analysis links to higher-level
analyses are also included. This finite element based analysis allow the modeling
strategies to reduce the number of cycles required to decompose the model and generate
the required next level finite element model. The framework architecture allows the
designer to switch and combine levels of analysis (such as a fast, low-level aerodynamics
solution combined with higher-level structural analysis).

The Dracon program has algorithms for structural layout and stiffening based on load
paths and shape constraints. These algorithms have been tightly integrated with the
overall framework to enable the layout and sizing of structure early in the conceptual
design stage. These algorithms are based on solid theory following an innovative
scientific process that still requires finite element models but does not require the
computation power of a standard finite element solver and is focused toward the overall
shape definition, sizing, and layout of the structures. This successful technology
developed by Dr. Valery Komarov, Dr. Alexander Danilin, and their associates has been
tested successfully at Purdue University by Professor Weisshaar and his group.

The Dracon analysis models can be integrated as part of the overall engineering
framework. These models can be integrated with the concept model for providing the
designer with feedback during the early design stages. Advanced visualization techniques
have been developed to allow the presentation of the analysis results superimposed on the
model geometry. The classes developed can be used for the output from Dracon as well
as other solvers.

The functionality developed in AML Dracon module allow the user to choose from
among several finite elements and lay out a preliminary structural design that can then be
optimized to find a theoretically optimal structure and estimate the weight of this
structure. This ability to optimize was not originally called for in the contract but was
furnished by Dr. Danilin at no charge to the contract. This theoretically optimal structure
will display Main Force Flows (MFEF's' that are useful for the design stage).

In this development effort, the Samara team has developed/researched descriptions of
theory and algorithms of structural and weight estimation for flat and wing-like structures
with stress constraints, which include a set of finite elements with all necessary
algorithms for the creation of stiffness matrices. These elements include:
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® (lassic rod

® Advanced membrane element
® Advanced shear element

® ]-Beam element

® Special element sandwich element for FEM-I modeling (Danilin’s own development)

A description of the sandwich element is given in the Appendix, while the other elements
are standard elements available in the open literature and are thus not documented here.

An AML/DRACON module was developed and tested while Dr. Danilin was at
TechnoSoft’s facility. Dr. Danilin accomplished his work on an accelerated schedule and
was finished in August 1999.

For a list of AML functionality available in this module, please see Appendix 5.

4.5. Aerodynamic analysis interfaces

TechnoSoft has developed, as well as extensively used, the aerodynamic analysis
methodologies considered in this work. Work has been done to explore tools for the
entire range of Mach number, dynamic pressure and vehicle configuration shape. A need
exists to understand the use of these aerodynamic tools in developing data sets that have
the appropriate level of detail for the calculations that are to be done. Table 1 lists the
aerodynamics tools that were interfaced, with their respective capabilities.

INDEPENDENT AERODYNAMICS TOOL
VARIABLE
Missile DATCOM PANAIR
Mach Number 0.0-25.0 0-0.9999
1.0001-4.0
Body Shape Axis-symmetric Arbitrary
Elliptical
(Nose Type)
Subsonic: Sharp Arbitrary
Transonic: Sharp N/A
Supersonic: Arbitrary Avrbitrary
Hypersonic: Arbitrary N/A
Angle of Attack -180 to +180 deg. Linear region
Sideslip Angle -180 to +180 deg. Linear region
Roll Angle 0 to 360 deg. 0 to 360 deg.
Altitude Continuum Continuum
Atmosphere Atmosphere

Table 1. Aerodynamics Analysis Tools Comparison

This suite of aerodynamic tools can be used for aerodynamic surface design and to create
a total aero- thermodynamic profile for trajectory and structural-TPS analysis. Pre and
post processing of aero thermal data for structural and thermal analysis and for displaying
the results can be interfaced through PATRAN.
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Missile Datcom

Missile DATCOM is an Air Force acrodynamic analysis code for a limited range of axis-
symmetric and elliptical body missile configurations with multiple sets of lifting/control
surfaces. This code uses slender body theory mixed with semi-empirical methodology to
rapidly produce aerodynamic characteristics for subsonic, transonic, supersonic and
hypersonic flight conditions. A key feature that has become very useful is the capability
to input experimental component data (e.g., body, body-wing, body-tail) that is used in
place of that component’s code-calculated data.

Inputs are very simple geometry (especially as compared to panel codes), reference
quantities and desired flight conditions. Outputs are 3-dimensional aerodynamic
coefficients, including trim characteristics and static and dynamic derivatives.

Missile DATCOM was selected for integration into the system because of its ease of use
and rapid and inexpensive calculations. The problem encountered for screening vehicles
is that arbitrary bodies cannot be input using the code’s geometry engine. This problem
was solved by also integrating an aerodynamic panel code (PANAIR) to compute
arbitrary body characteristics, processing its output into Missile DATCOM input format
as “experimental” body alone component data, then using Missile DATCOM to generate
complete configuration characteristics (a simple equivalent body of revolution is input for
the Missile DATCOM body geometry). Use of the more CPU intensive panel code for
the body alone calculations, serves to reduce turn-around time for the calculation of the
aerodynamic characteristics and the preliminary screening of TAV configurations.

During the integration of Missile DATCOM, GUIs were developed for input and output
processing. An algorithm to set up multiple runs of the code to develop and collect the
aerodynamic output into coefficient tables of the appropriate format for direct input to
trajectory codes was also created and implemented.

For a list of AML functionality available in this module, please see Appendices 2 and 3.

PANAIR

Higher-order panel methods offer the appropriate level of fidelity for force/moment
analysis at acceptable run time for today’s engineering workstation environment. The
work developed allows the utilization of PANAIR (and QUADPAN in a later update) to
capture trends of subsonic/transonic/supersonic pitching moments and drag-due-to-lift.
Several other panel codes such as VORLAX, WOODWARD, APAS-UDP could be
integrated in a similar methodology for developing panel models that are sufficiently
robust for reliable trends as the vehicle shape is varied. In addition, the team has
developed processes for vehicle trim analysis and drag-due-to-lift estimation that enhance
the data fidelity of panel codes.

PANAIR is a NASA aerodynamic analysis code for arbitrary three-dimensional
configurations in subsonic and supersonic speed regimes. The code solves the linearized
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potential flow equations with a higher-order singularity distribution of sources and
doublets over surface panels. In the past, the geometry input to this code has been very
difficult, particularly at wing/body junctures, where it is easy for the user to leave a gap
between panels. The PANAIR code contains procedures to “fix” these holes, but the
whole process has been a large drawback. In cooperation with Lockheed Marin
Orlando’s Missiles and Fire Control Engineering Methods Group, PANAIR has been
integrated into IMD, where it uses the geometry created within the IMD design
environment to generate the surface elements, or paneling, at the push of a button. This
paneling procedure leaves no gaps, and the panel normal vectors are always pointed
outwards into the flow. The user can change the panel density and the panel-to-network
relations, with the click of the mouse. Other PANAIR inputs, such as flight conditions,
reference quantities, panel boundary conditions and wakes, have been assembled into
user-friendly, hierarchical GUIs that automatically appear when related option buttons are
clicked.

For a list of AML functionality available in this module, please see Appendix 2 and 4.

4.6. Integrated Environment

The system has been developed to allow the user to select which modules (and analyses)
are used at any time. The user can also build models using the various modules and mix
different levels of analysis. For example, a first-order aerodynamic analysis could be
used to provide loads for a higher-order structural analysis.

TechnoSoft has used the Phase II resulting software modules into the underlying
framework architecture for air vehicle design. This framework supports a collaborative
design environment for seamlessly integrating various tools and engineering processes
from the different disciplines. Lockheed Martin Missiles and Fire Control in Orlando and
groups within the Air Vehicles Directorate of the Air Force Research Labs are currently
using the developed modules and architecture in several AML-based applications.
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Appendix 1: Mesh Surfaces AML Documentation

This documentation is based on the premise that the cross sections used in these classes
are in canonical space (created in the XY plane) and then oriented using a reference
coordinate system.

mesh-surface-from-2-closed-cross-sections-class [Class]

Allows the user to create a web surface provided curve-1-object and curve-2-object.

Inherit-from:

(mesh-points-from-2-closed-cross-sections-mixin mesh-surface-from-points-
class)
Properties:

curve-1-object first curve

curve-2-object second curve

curve-1-point-generation-method ~ Specify point generation method for curve-1. 'equal 'sin 3d-
point-list<User provided coordinates>, or parameter-list

curve-2-point-generation-method ~ Specify point generation method for curve-2. ‘equal 'sin 3d-
point-list<User provided coordinates>, or parameter-list

split-curves-into-upper-lower? flag to indicate whether to split input curves into upper and lower

number-of-points-per-cross-section-list If input curves are to be split then the property is a list
specifying the number of points on upper and lower curves, else it
is a number specifying the number of points along the curves.

number-of-cross-sections define the number of intermediate cross sections between curve-1-
object and curve-2-object

intermediate-curves-shape-factor-list Controls the shape of the intermediate sections (a
factor of 0.0 maintains the shape of curve-1-object and factor of
1.0 maintains the shape of curve-2-object)

intermediate-curves-distance-factor-list Controls the position of the intermediate curves
between curve-1-object and curve-2-object

path-curve-object Determines the path the intermediate curves follow to get from curve-1-
object to curve-2-object
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intermediate-alignment-type ~ Controls how the intermediate curves are aligned. 0 = curve-1-
object normal, 1 = interpolate, 2 = follow path curve normal

x-plus-scaling-curve-object  points to the x-plus scaling curves
x-minus-scaling-curve-object points to the x-minus scaling curves
y-plus-scaling-curve-object ~ points to the y-plus scaling curves
y-minus-scaling-curve-object points to the y-minus scaling curves

The user can query the object for the oriented mesh points by demanding the "combined-
points" from an instance of MESH-SURFACE-FROM-2-CLOSED-CROSS-SECTIONS-
CLASS. The points are oriented in such a way that the panel normals point outside.

mesh-surface-from-closed-cross-sections-class [Class]

Inherit-from:

(mesh-points-from-closed-cross-sections-mixin mesh-surface-from-points-class)

Properties:
cross-sections-list cross sections to be meshed.
number-of-points-per-cross-section-list Number of points per cross section

number-of-cross-sections-list Number of intermediate cross sections

intermediate-curves-shape-factor-lists A list of lists specifying the intermediate shapes
' factors

intermediate-curves-distance-factor-lists A list of lists specifying the location of the
intermediate curves.

path-curves-list A list of path curves. Or the user can provide a single path curve.
intermediate-alignment-types-list A list defining the alignment types.
cross-sections-point-generation-methods-list Define point generation methods for curves.
split-cross-sections-into-upper-lower? flag defining whether to split cross sections into

upper and lower.

x-plus-scaling-curves-list X-plus scaling curves. Can be a list or a single curve
x-minus-scaling-curves-list ~ X-minus scaling curves. Can be a list or a single curve
y-plus-scaling-curves-list Y-plus scaling curves. Can be a list or a single curve
y-minus-scaling-curves-list ~ Y-minus scaling curves. Can be a list or a single curve
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The user can query the object for the oriented meshed points by demanding the
"combined-points" from an instance of MESH-SURFACE-FROM-CLOSED-CROSS-
SECTIONS-CLASS. The points are oriented in such a way that the panel normals point
outside.

mesh—surface-from-2-open-cross-section-seg ments-class [Class]

This class allows the user to create mesh (open) curve segments and build surfaces from
the curve segments.

Inherit-from:

(mesh-surface-from—2-open—cross-section-segments-class)

Properties:
curve-segment-list-1 An ordered list of curve segments
curve-segment-list-2 An ordered list of curve Segments

curve-segments-1-start-points-list ~ List of points listing the start points for segl in global space
curve-segments-2-start-points-list  List of points listing the start points for seg2 in global space

number-of-points-per-curve-segments-list A list of numbers specifying the number of sampled
points per segment.

number-of-cross-sections Number of intermediate points.
intermediate-curves-shape-factor-list A list of factors defining the shape.

intermediate-curves-distance-factor-list A list of factors defining the position of the
intermediate sections.

path-curve-object The path the intermediate curves follow.

intermediate-alignment-type  Intermediate curves alignment types. 0 = curve-segment-list-1
normal, 1= interpolate 2 = follow path curve normal

curve-segment-1-point-generation-method-list point generation method for curves in curve-
segment-list-1
curve-segment-2-point-generation-method-list point generation method for curves in curve-

segment-list-2

x-plus-scaling-curve-object X-plus scaling curve object
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x-minus-scaling-curve-object X-minus scaling curve object
y-plus-scaling-curve-object ~ Y-plus scaling curve object
y-minus-scaling-curve-object Y-minus scaling curve object

For the user to get the oriented points associated with this object one needs to call GET-
SHABP-OBJECTS passing an instance of MESH-SURFACE-FROM-2-OPEN-CROSS-
SECTION-SEGMENTS-CLASS as input. This will return a list of instances. The user
can then demand the combined-points from the returned instances.

mesh-points-from-open-cross-section-segments-mixin [Class]

Inherit-from:

(basic-mesh-points-mixin)

Properties:
curve-segment-lists A list of lists defining the curve segments.

curve-segments-start-points-lists A List of lists of points listing the start points for seg in
global coord

number-of-points-per-cross-section-list A list defining the number of points per segments.
number-of-cross-sections-list A list defining the number of intermediate cross sections.
intermediate-curves-shape-factor-lists A list of lists defining the shape factors.

intermediate-curves-distance-factor-lists A list of lists defining the intermediate curves
positions.

path-curves-list A list defining the path curves.
intermediate-alignment-types-list A list identifying the intermediate curves alignment type.
cross-sections-point-generation-methods-list A list identifying point generation methods
x-plus-scaling-curves-list X-plus scaling curve. Can be a list or a single curve.
x-minus-scaling-curves-list ~ X-minus scaling curve. Can be a list or a single curve.

y-plus-scaling-curves-list Y-plus scaling curve. Can be a list or a single curve.
y-minus-scaling-curves-list ~ Y-minus scaling curve. Can be a list or a single curve.

19




mesh-cap-from-closed-mesh-surface-class [Class]

Inherit-from:

(mesh-surface-from-points-class)

Properties:

mesh-surface-to-cap-object  The mesh surface to be capped.

front? A flag set by the user indicating whether the cap lies at the front of the
meshed surface or at the back of the surface. Used to determine the
normal.

open? Determines whether the cap is open or closed.

diameter Diameter of cap, if cap is open.

flip-normal? Allows the user to flip the cap normal.

center-point-coordinates A global coordinate specifying where the cap is closed.
number-of-cross-sections  Number of intermediate curves.

For the user to generate oriented-points the user needs to demand "COMBINED-
POINTS" from an instance of type MESH-CAP-FROM-CLOSED-MESH-SURFACE-
CLASS.

panel-normals-from-mesh-surface-points-class [Class]

This class allows the user to draw the mesh-surface normals.

Inherit-from:

(simple-geometry-class)

Properties:
mesh-surface Mesh surface
normals-length Normal length
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mesh-surface-data-class [Class]

Allows the user to print the mesh data in a standard format

Inherit-from:

(object)

Properties:

mesh-surface The surface to get the data from.

reference-coordinate-system
The user can define a reference coordinate system allowing the user to

change the mesh point coordinates to reflect orientation of the
reference coordinate system.

data-format Mesh data can be formatted in a 'grid (cross sections), or 'panel format.
filename The name of the mesh points data file
read-mesh-surface-data-class [Class]

Allows the user to read a mesh points data file, create the geometry, orient the geometry
and then use an instance of MESH-SURFACE-DATA-CLASS to regenerate the mesh

points data file.

Inherit-from:

(geom-object)

Properties:

filename Data filename
reference-coordinate-system  Specify a reference coordinate system

join-box-class [Class]

Allows the user to merge separate curve loops in a junction box.
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Inherit-from:
(object)

Properties:
box-width Junction box width
box-height Junction box height
box-depth Junction box depth
loops-to-join A list of curve Loops to join.
start-node-number The start node number

number-of-loop-points A list of lists of box faces and number of points on the face edges.

number-of-intermediate-points Number of intermediate cross sections between the loops to join
and the box faces
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Appendix 2: AML General Aerodynamics Classes

This document covers the following class types:
e Aerodynamic Coefficient Sources

¢ Flight Conditions

The aerodynamic coefficients source classes provide a common interface for accessing
coefficient data. Classes and applications can be written using interfaces that are
independent of the source of coefficient information.

The flight conditions class provides a standard way to specify ranges of Mach numbers
and flight angles.

Aerodynamic Coefficients Source Classes

These classes provide a common interface that can be used by all classes which provide
aerodynamic coefficient data, whether that data originates from analysis, stored data in a
file, or experimental data.

These classes assume that the data can be referenced in a multidimensional tabular form.
The data is stored as lists of coefficient values and referenced by key values. The
coefficients can be anything, but are typically quantities such as lift and drag coefficients.
The keys are typically Mach numbers, angles of attack, etc. It is assumed that the data
will be for ranges of key values (e.g., for Mach numbers 0.5, 0.6, 0.7, and 0.8) and that all
combinations of key values will have corresponding coefficients.

The classes which provide this capability are aerodynamic-coefficients-source-class and
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file-aerodynamic-coefficients-source-class.  The class aerodynamic-coefficients-plot-
class provides a way to present a graphical representation of the data contained in a class
that inherits from aerodynamic-coefficients-source-class.

aerodynamic-coefficients-source-class [Class]

This class is used to provide a common interface for other classes that compute
aerodynamic coefficients. By combining this class with a class that computes the
coefficients, any other class can access those coefficients using common properties and
methods. This allows classes that require aerodynamic coefficients to be written without
needing specific knowledge about the originating classes.

This class stores a multidimensional table of data. The data in the table is referenced by
keys. These keys refer to things like Mach number or angle of attack. For each
combination of key values, a set of coefficients can be retrieved from the table (if those
key values are valid).

This class is typically used to provide access to coefficients that were generated by
computing values for all possible combinations of key values (i.e., by looping through
lists of Mach numbers, angles of attack, etc., and computing coefficients for each
combination).

The keys and coefficients have associated symbols, labels, and descriptions. The symbol
1s a single-quoted name for the key or coefficient (e.g., 'M for Mach number). The
symbol is used for all reference to values of the key or coefficient. The label is a short
string used to refer to the key or coefficient (e.g., "M" for Mach number). The label is
used for short references. The description is a longer string used to refer to the key or
coefficient (e.g., "Mach Number"). The description might be used in the labels for a
graph or table.

Example user-specified property values:
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Property Example Value

ac-key-symbols '(M alpha beta)

ac-key-ranges '(0.50.70.9 1.1 1.3) (0.0 5.0 10.0) (0.0 2.0 4.0))

ac-key-labels '("M" "alpha" "beta")

ac-key-descriptions '("Mach Number" "Angle of Attack" "Sideslip
Angle™)

ac-coefficient-symbols '(CA CY CN CSL CSM CSN)

The internally recognized coefficients are summarized in the following table. When the
user specifies coefficients in ac-coefficient-symbols, the values in this table will be used
to fill in the property ac-coefficient-info. The coefficients do not need to be restricted to
those available in this table. If other coefficients are specified, either ac-coefficient-info
will need to be overridden or the default values (using the symbol as label and
description) will be used. “

Coefficient Coefficient Label Coefficient Description
Symbol

CN "CN" "Normal Force Coefficient"
CSM "Cm" "Pitch Moment Coefficient"
CA "CA" "Axial Force Coefficient"
Cy "CY" "Side Force Coefficient"
CSN "Cn" "Yaw Moment Coefficient"
CSL "CI" "Roll Moment Coefficient"
CSMA "Cma" "dCm/dalpha”

CAN "CNa" "dCN/dalpha"
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CSNB "Cnb" "dCn/dbeta"

CYB "CYb" "dCY/dbeta"

CSLB "Clb" "dCl/dbeta"

CLCD "CL/CD" "CL/CD"

XCP "Xcp" "Center of Pressure"
CL "CL" "Lift Coefficient"
CD "CD" "Drag Coefficient"

The coefficient data in this class should be accessed through the gez-coefficients method.

Inherit-from:

(multi-key-table-class)

Properties:

ac-key-symbols
ac-coefficient-symbols
ac-key-ranges

ac-key-labels
ac-key-descriptions

ac-possible-coefficients

ac-coefficient-info

A list of symbols used to refer to key values in table.

A list of symbols used to refer to coefficients in the table.

A list of lists containing the values corresponding to each key in the
table.

A list of short strings corresponding to each symbol in ac-key-symbols.

A list of strings providing descriptions of each symbol in ac-key-
symbols.

This property contains a list of lists of data providing default coefficient
information. The contents of this list are summarized in the table
above. This property should normally not be changed by the user.

This property contains a list of lists of information describing the
coefficients listed in ac-coefficient-symbols. This property should
normally net be changed by the user. This list will contain lists of
(symbol label description) for each coefficient automatically
created from the information in ac-possible-coefficients. The label
and description will be string versions of the coefficient symbol for
all symbols not available in ac-possible-coefficients.
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1

The following example class will be used to illustrate the methods that access the
properties and data in this class. For the examples, assume that an instance of this class
has been created and can be referenced as /coeffs.

(define-class example-aero-coeffs-class

:inherit-from (aerodynamic-coefficients-source-class)

:properties (
ac-key-symbols '(M alpha beta)
ac-key-ranges '((0.5 0.7 0.9) (0.0 5.0 10.0) (0.0 2.0))
ac—key-labels '("M" "alpha" "beta")
ac-key-descriptions ' ("Mach Number” "Angle of Attack" "Sideslip Angle")
ac-coefficient-symbols '(CA CY CN)

;The data in table-list would normally be generated by an analysis class.
;7It is set directly in this example for illustration purposes only.

table-list ' (((0.5 0.0 0.0) (0.C 0.1 0.2))
((0.5 0.0 2.0) (0.3 0.4 0.5)
((0.5 5.0 0.0) (0.6 0.7 0.8))
((0.5 5.0 2.0) (0.9 1.0 1.1))
((0.5 10.0 0.0) (1.2 1.3 1.4))
((0.5 10.0 2.0) (1.5 1.6 1.7))
((0.7 0.0 0.0) (1.8 1.9 2.0)
((0.7 0.0 2.0) (2.1 2.2 2.3))
((0.7 5.0 0.0) (2.4 2.5 2.6))
((0.7 5.0 2.0) (2.7 2.8 2.9))
((0.7 10.0 0.0) (3.0 3.1 3.2))
({(0.7 10.0 0.0) (3.3 3.4 3.5))
((0.9 0.0 0.0) (3.6 3.7 3.8))
((0.9 0.0 2.0) (3.9 4.0 4.1))
((0.9 5.0 0.0) (4.2 4.3 4.4))
((0.9 5.0 2.0) (4.5 4.6 4.7))
((0.9 10.0 0.0) (4.8 4.9 5.0))
((0.9 10.0 2.0) (5.1 5.2 5.3))
)
)
)
get-key-range aerodynamic-coefficients-source-class [Method]

This method returns the range of values for any of the keys.

Format:

(get-key-range instance symbol)

Arguments:
instance An instance of the class aerodynamic-coefficients-source-class.
symbol A symbol representing one of the keys to the data table.
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Examples:

(get-key-range !coeffs 'M) returns '(0.5 0.7 0.9)
(get-key-range !coeffs 'B) retumns nil since ‘B is not a key for this data.

get-coefficients aerodynamic-coefficients-source-class [Method]

This method should be used to access coefficient data in the aerodynamic-coefficient-
sources-class.

This method returns a list of coefficients for specified key values. The key-info argument
allows the user to request coefficient values for any combination of key values. The
coefficients argument allows the user to request specific coefficients only.

The information is returned in the form of a list of lists. Each entry in the list contains a
list of key values (in the order given in key-info) and a list of coefficient values (in the
order given in coefficients).

Format:

(get-coefficients instance key-info coefficients)

Arguments:
instance An instance of the class aerodynamic-coefficients-source-class.
key-info A list of lists containing key symbols and values. Coefficients which

have keys with the specified values will be returned. In the results,
the key values will be returned in the same order as specified in
key-info. A range of nil indicates that all values in the table for that
key should be returned.

coefficients A list of requested coefficient symbols. The coefficients will be
returned in the same order.

Examples:
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(get-coefficients !coeffs '((M (0.5)) (alpha (5.0)) (beta (0.0)))
"(CA)) returns (((0.5 5.0 0.0) (0.6)))

(get-coefficients tcoeffs '((M) (alpha) (beta)) '(CA)) returns CA for
all values of ‘M, ‘alpha, and beta: ' (( (0.5 0.0 0.0)
(0.0)) .. ((0.9 10.0 2.0) (5.1))).

(get-coefficients !coeffs '((M (0.5)) (alpha (0.0 5.0)) (beta
{0.0))) '"(CA)) returns (((0.5 0.0 0.0) (0.0))
((0.5 5.0 0.0) (0.6))).

(get-coefficients !coeffs '((M (0.5)) (alpha (0.0)) (beta (2.0)))
'"(CA CN CY)) returns (((0.5 0.0 2.0) (0.3 0.5
0.4)))

write-coefficients-file aerodynamic-coefficients-source-class [Method]

This method is used to write the data contained in the aerodynamic-coefficients-source-
class object to a file in a standard format. This format is common between all classes that
inherit from aerodynamic-coefficients-source-class. Objects or applications written to
read this format will be able to read data form any of these classes.

Format:

(write—-coefficients~file instance filepath :coefficients)

Arguments:

instance An instance of the class aerodynamic-coefficients-source-class.

filepath The full path and file name of the data file.

:coefficients This argument allows the user to override the coefficient data that
would normally be written. The default value is #i/ and this should
not normally be changed.

read-coefficients-file aecrodynamic-coefficients-source-class [Method]

This method is used to read key and coefficient data from a file written in the standard
format (see the method write-coefficients file). This method returns a list of data — it does
not directly change the object. This method is used by file-aerodynamic-coefficients-file
to retrieve data.

Format:
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(read-coefficients-file instance filepath)

Arguments:
instance An instance of the class aerodynamic-coefficients-source-class.
filepath The full path and file name of the data file.
generate-coefficients-file aerodynamic-coefficients-source-class [Method]

This method is used to write the data contained in the aerodynamic-coefficients-source-
class object to a stream in a standard file format. This file format is common between all
classes that inherit from aerodynamic-coefficients-source-class. Objects or applications
written to read this format will be able to read data from any of these classes. This
method is called from within write-coefficients-file, which can be used to write the data
directly to a file.

Format:
(generate-coefficients-file instance :stream : version
:coefficients)
Arguments:

instance An instance of the class aerodynamic-coefficients-source-class.

:stream A keyword specifying the stream that the data should be written to. The
default value of 7 will write the data to the AML buffer.

:version Specifies the file version that should be written. This will default to the
latest version and should not normally be specified.

:coefficients This argument allows the user to override the coefficient data that
would normally be written. The default value is ni/ and this should
not normally be changed.

generate-view-coefficients-table acrodynamic-coefficients-source-class [Method]

This method is used to create a tabular report of the data contained in the aerodynamic-

coefficients-source-class. This is primarily available to provide an easily human-readable
report format.

Format:
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(generate-view-coefficients-table instance :stream)

Arguments:
instance An instance of the class aerodynamic-coefficients-source-class.
:stream A keyword specifying the stream that the output should be written to.
The default value of t will write the data to the AML buffer.
file-aerodynamic-coefficients-source-class [Class]

This class provides an interface to aerodynamic coefficient data that is contained in a file
written in the standard format (i.e., by the method write-coefficients-file). Normally, this
will be data that was created in another instance of a class inheriting from aerodynamic-

coefficients-source-class.

To any other objects using the standard access methods (e.g., get-coefficients), this object
will appear the same as the object where the data originated.

This class may also be used to provide an interface to externally created data (e.g.,
experimental data) which has been written to a file in the correct format.

Inherit-from:

(aerodynamic-coefficients-source-class)

Properties:
filepath The full path and file name of the data file.
file-nfo This property contains information on the data in the file. It should not

normally be accessed by the user and should not be changed. The
normal aerodynamic-coefficients-source-class properties should be
used to access the data.
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aerodynamic-coefficients-plot-class [Class]

This class provides an x-y plot of the coefficient data contained In an instance of
aerodynamic-coefficient-source-class.

The data can be plotted as lines of constant Mach number, constant angle of attack, or
both. The values of the keys other than ‘M and ‘alpha must be constant for the plot and
are set in the property other-key-values.

The appearance of the plot can be modified by changing the datagraph-object properties
that are inherited into this class.

Inherit-from:

(datagraph-object)

Properties:

coefficients-object

ordinate-symbol

abscissa-symbol

show-mach-curves?

show-alpha-curves?

other-key-values

title-prefix

This property should contain a reference to an instance of aerodynamic-
coefficient-source-class.

The symbol of the key or coefficient which should be used as the y-axis
of the plot. This symbol must be present in either the ac-key-
symbols or ac-coefficient-symbols property of the coefficients-
object.

The symbol of the key or coefficient which should be used as the x-axis
of the plot. This symbol must be present in either the ac-key-
symbols or ac-coefficient-symbols property of the coefficients-
object.

When ¢, lines of constant Mach number will be plotted. The default
value is 2.

When ¢, lines of constant angle of attack will be plotted. The default
value is 2.

A list of values for keys other than ‘M and ‘alpha. These will be held
constant in the plot. The order of the values corresponds to the
order of the keys in other-keys. The default values will be the first
entries in ac-key-ranges.

A string value in this property will be used as the beginning of the title
displayed at the top of the graph. The default value is 7:/ and
indicates that no additional title text will be included. The title will
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key-symbols
coefficient-symbols
mach-index
alpha-index
mach-numbers
angles-of-attack
other-keys
ac-key-descriptions
ac-key-ranges
key-search-list
coefficients-list
variable-labels

variable-descriptions

be constructed from this property and the contents of ploz-
description.

A local copy of the property ac-key-symbols in coefficients-object.
This should net be changed by the user.

A local copy of the property ac-coefficient-symbols in coefficients-
object. This should not be changed by the user.

The position of the Mach number symbol in the list ac-key-ranges.
This should net be changed by the user.

The position of the angle of attack symbol in the list ac-key-ranges.
This should not be changed by the user.

The range of Mach numbers in ac-key-ranges. This should not be
changed by the user.

The range of angles of attack in ac-key-ranges. This should not be
changed by the user.

A list of keys other than ‘M (Mach number) and ‘alpha (angle of attack)
in coefficients-object. This should not be changed by the user.

A Jocal copy of the property ac-key-descriptions in coefficients-object.
This should not be changed by the user.

A local copy of the property ac-key-ranges in coefficients-object. This
should net be changed by the user.

A list containing the key info required to get coefficients from
coefficients-object. This should not be changed by the user.

The results of a call to get-coefficients on coefficients-object. This
should net be changed by the user.

A list of labels for all keys and coefficients in coefficients-object. This
should not be changed by the user.

A list of descriptions for all keys and coefficients in coefficients-object.
This should not be changed by the user.

variable-label- descnptlons A list of combined variable-labels and variable-descriptions. This

mach-lists
alpha-lists
ordinate-index
abscissa-index
mach-curves
alpha-curves

data

should not be changed by the user.

A list of data used to draw constant Mach lines in the plot. This should
not be changed by the user.

A list of data used to draw constant angle of attack lines in the plot.
This should net be changed by the user.

The position of the ordinate-symbol in the key-symbols list. This
should not be changed by the user.

The position of the abscissa-symbol in the key-symbols list. This
should not be changed by the user.

A list of data used to draw constant Mach lines in the plot. This should
not be changed by the user.

A list of data used to draw constant angle of attack lines in the plot.
This should net be changed by the user.

The data that is drawn in the plot: a combination of mach-curves and
alpha-curves as appropriate. This should net be changed by the
user.

multi-key-table-class

[Class]

This class provides basic functionality for maintaining a set of data in a table-lookup
form. When using an instance of aerodynamic-coefficients-source-class, the access
methods associated with that class should be used instead of those associated with multi-

key-table-class.
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Inherit-from:
(object)
Properties:
table-list This property contains key-referenced data. It should not normally be
changed or accessed by the user. The methods add-record-to-table
and get-records-from-table should be used.
add-record-to-table multi-key-table-class [Method]

This method is used to add data to an instance of multi-key-table-class.

Format:

(add-record-to-table instance keys value)

Arguments:
instance An instance of the class multi-key-table-class.
keys A list of the key values for the record being added to the object data.
value A list of the value associated with the keys that is being added to the
object data.
get-records-from-table multi-key-table-class [Method]

This method is used to retrieve one or more records from an instance of multi-key-table-
class. All records which match the specified keys will be returned.

Format:

(get-records-from-table instance keys)
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Arguments:

instance An instance of the class multi-key-table-class.

keys A list of lists of key values for records which should be retrieved from
the object. All records that match the values specified will be
returned.
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Flight Conditions Class

flight-conditions-class [Class]

This class is used to specify a range of flight conditions that can be used as mnput to other
objects (primarily analysis classes). Typically, by pointing to an instance of this class,
these objects will automatically get Mach number and angle information. The analysis
objects will then compute values (primarily aerodynamic coefficients) for each possible
combination of Mach number and the angles. This behavior is from the analysis object —
the flight-conditions-class is only used to specify input data.

This class has properties for two different modes for specifying flight angles. The mode
is indicated by the property angle-mode. When angle-mode is 'body-axes, then the
properties angles-of-attack and sideslip-angles should be used to specify a range of angles
of attack and sideslip angles. When angle-mode is 'total, then the properties total-angles-
of-attack and roll-angles should be used to specify a range of total angles of attack and
roll-angles.

Some classes which use a reference to an instance of Slight-conditions-class as an input
may not be able to use both modes of flight angle specification.

Inherit-from:
(object)
Properties:
mach-numbers A list of Mach numbers. The default value is nil.
angle-mode This property specifies which angle properties contain flight condition

information. Allowed values are 'body-axes and fotal. When
angle-mode is 'body-axes, the properties angles-of-attack and
sideslip-angles should be used. When angle-mode is 'total, the
properties fotal-angles-of-attack and roll-angles should be used.
The default value is 'body-axes.

angles-of-attack A list of angles of attack to be used when angle-mode is 'body-axes.
The default value is nil.
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sideslip-angles A list of sideslip angles to be used when angle-mode is 'body-axes. The
default value is nil.

total-angles-of-attack A list of total angles of attack to be used when angle-mode is ‘total.
The default value is #nil.
roll-angles A list of roll angles to be used when angle-mode is ‘fotal. The default

value is nil.
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Appendix 3: AML/Datcom Interface Documentation

The datcom-source-class provides the primary interface to the Datcom application.
Control of Datcom is through properties in this object and in its children. Additional
objects may need to be instantiated to interface to the vehicle geometry.

All of the capabilities of this interface to Datcom can be accessed through properties.
Users will normally not need to call any methods.

datcom-source-class [Class]

The datcom-source-class provides an AML interface to Datcom.

Several of the properties of this class are used to point to instances of other classes. The
Jlight-conditions-object property should point to an instance of class flight-conditions-
class. 1If this property is given a value of nil, then the user must provide values for the
flight condition properties (flight-conditions-angle-mode, total-angles-of-attack, roll-
angles, angles-of-attack, sideslip-angles, and mach-numbers) as required (see the flight-
conditions-angle-mode for property requirements).

Depending on the values given to some of the properties of this object, more than one run
of Datcom may be required. This is handled transparently by the class; no user
interaction or special setup is required.

The datcom-source-class has several subobjects, some of which have properties that
should be changed by the user. In order to change the values or formulas of these
properties, new classes will need to be created (inheriting from the originals) with
replacement formulas and put in the subobjects section of a new datcom class mnheriting
from datcom-source-class. The subobjects, their classes, and whether they contain user-
editable properties are summarized in this table:
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Subobject Name | Subobject Class User
Editable?

fltcon datcom-fltcon-class yes

refq datcom-refq-class yes

trim datcom-trim-class yes
finsets datcom-finset-properties-class no

body datcom-body-properties-class no
protuberances datcom-protuberance-set-properties- | no

class
inlet datcom-inlet-properties-class no

This table summarizes the keys used to access the results of Datcom runs.

Table Key ac-key- ac-key- ac-key-descriptions | Included when flight-

symbols labels conditions-angle-mode
is

M

Mach "M" "Mach Number"

number

angle of | ‘alpha "alpha" "Angle of Attack" ‘body-axes

attack

sideslip 'beta "beta" "Sideslip Angle" 'body-axes

angle

total angle | ‘alpha-t "alpha-t" "Total Angle of| total

of attack Attack"

roll angle ‘phi "pht" "Roll Angle" 'total
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deflection '(delta '("delta" '("Control
info Deflection"
wing-set "wing-set"
"Wing Set Number"
wing) "wing")
"Wing Number")

This table summarizes the coefficients that are computed by Datcom and stored in this
object. Coefficients are included only when their associated property is ¢.

Coefficients Included when

CN CSM CA CY CSN CSL CSMA always

CAN CSNB CYB CSLB CLCD XCP CL

CDh

CMQ CLNR CLLP compute-dynamic-
derivatives?

CAP include-power-on-data?

CNT CAT CLT CDT include-trim-power-off-
data?

CAPT CDPT include-trim-power-on-
data?

Inherit-From:

(aerodynamic—coefﬁcients-source-class)

Properties:

flight-conditions-object ~ The value of this property should be a the-reference to an instance of
class flight-conditions-class. The datcom-source-class object will
get values from the following properties from this object: flight-
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conditions-angle-mode, total-angles-of-attack, roll-angles, angles-
of-attack, sideslip-angles, and mach-numbers.

flight-conditions-angle-mode  The orientation of the vehicle can be specified using either the
body axes angles or total angles. If the value is ‘body-axes, then
the properties angles-of-attack and sideslip-angles must be given
values. If the value is ‘7otal, then the properties total-angles-of-
attack and roll-angles must be given values. If the Might-
conditions-object property points to an instance of flight-
conditions-class, then the value of Slight-conditions-angle-mode
will be taken from that object. Allowable values for flight-
conditions-angle-mode are 'body-axes and 'fotal.

total-angles-of-attack If the flight-conditions-object property does not point to a flight-
conditions-class object and the flight-conditions-angle-mode
property has a value of 'total, then this property should contain a
list of the total angles of attack (in degrees) for which aerodynamic
coefficients should be computed (e.g., (0.0 5.0 10.0 15.0).

roll-angles If the flight-conditions-object property does not point to a flight-
conditions-class object and the Alight-conditions-angle-mode
property has a value of 'fotal, then this property should contain a
list of the roll angles (in degrees) for which aerodynamic
coefficients should be computed (e.g., '(0.0 2.0 4.0 6.0).

angles-of-attack If the flight-conditions-object property does not point to a flight-
conditions-class object and the Jlight-conditions-angle-mode
property has a value of ‘body-axes, then this property should
contain a list of the angles of attack (in degrees) for which
aerodynamic coefficients should be computed (e.g., '(0.0 5.0 10.0
15.0).

sideslip-angles If the flight-conditions-object property does not point to a Sight-
conditions-class object and the Slight-conditions-angle-mode
property has a value of 'body-axes, then this property should
contain a list of the sideslip angles (in degrees) for which
aerodynamic coefficients should be computed (e.g., '(0.02.04.0
8.0).

mach-numbers If the flight-conditions-object property does not point to a fight-
conditions-class object, this property should contain a list of the
Mach numbers for which aerodynamic coefficients should be
computed (e.g., '(0.5 0.6 0.8 0.9 1.1 1.2)).

fuselage-interface-object This property should point to an instance of datcom-fuselage-interface-
class. This object contains information required to create the
Datcom input for the fuselage.

wing-set-geometry-objects This property should contain a list of instances of datcom-wing-set-
interface-class. Each of these instances will contain information
required to create the Datcom input data for wings or fins.

protuberance-set-source-object This property should point to a datcom-protuberances-interface-
class. This object contains information required to create the
Datcom input for protuberances.

inlet-source-object This property should point to a datcom-inlet-interface-class. This
object contains information required to create the Datcom input for
the protuberance.

units-for-datcom-run Determines the units of the data being given to and coming out of
Datcom. Allowed values are 'in 'ft ‘em 'm. The default value is ‘in.

data-directory The directory in which the output of the datcom-source-class object
should be written. The default is (logical-path :temp).

41




results-file The path and filename where the aerodynamic coefficients from the
Datcom runs should be stored. The default file has the name
"coeffs.dat" and will be written to the directory given by the
property data-directory.

log-file The path and filename where a record of the Datcom runs and output
files should be stored. The default file has the name "datcom.log"
and will be written to the directory given by the property data-
directory.

output-directory The directory in which the actual output files from Datcom should be
written. Sequentially numbered copies of several of the output files
will be kept in this directory (and logged in the file given by the
property log-file). By default, this is the same directory as that
given in the property data-directory.

compute-dynamic-derivatives? If £, the values of the dynamic derivatives (CMQ, CLNR, CLLP)
will be computed. If 7/, no dynamic derivatives will be computed.

include-power-on-data?  If 7, an additional aerodynamic coefficient will be computed for the
power on case (CAP). If nil, this coefficient will not be computed.

include-trim-power-on-data? If ¢, additional aerodynamic coefficients will be computed for the
power on trim condition (CAPT, CDPT). If nil, no additional
coefficients will be computed.

include-trim-power-off-data? If ¢, additional aerodynamic coefficients will be computed for the
power off trim condition (CNT, CAT, CLT, CDT). If nil, no
additional coefficients will be computed.

run-fin-deflections? If ¢z, additional Datcom runs will be made to determine the aerodynamic
coefficients for a range of fin deflections. The deflections are
given by the wing or fin interface objects.

show-window-while-running? If ¢, a window indicating that Datcom is running may be displayed.
The default value is nil.

ac-key-symbols A list of the keys used to access the results of the Datcom runs. The
contents of this list are summarized in the table above and should
not be changed by the user.

ac-key-labels A list of printed names corresponding to the keys in ac-key-symbols.

The contents of this list are summarized in the table above and
should net be changed by the user.

ac-key-descriptions A list of descriptive strings corresponding to the keys in ac-key-
symbols. The contents of this list are summarized in the table
above and should not be changed by the user.

deflection-key-info A summary of key information reflecting control deflections. The
contents of this list should not be changed by the user.
ac-key-ranges A list of lists of the values which will be used for each key in Datcom.

The entries in this list come from properties such as mach-
numbers, angles-of-attack, etc. and should not be changed by the
user.

ac-coefficient-symbols A list of the symbols representing the data computed by Datcom and
stored in fable-list. The contents of this list is summarized in the
table above and should net be changed by the user.

table-list This property contains the cumulative results of all Datcom runs
required to produce the requested data. This data is in the form of
a list of lists. Each individual list contains a list of key values and a
list of coefficient values. The order of the key and coefficient
values corresponds to the order of the symbols in ac-key-symbols
and ac-coefficient-symbols.
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methods

generate-datcom-file

run-datcom

datcom-fitcon-class

[Class]

This class is used as a subobject of datcom-source-class. When used as a subobject, the
mach number and flight angle properties will, by default, get the value of the property in
They should not normally be overridden by the

the parent datcom-source-class.

subobject.

Note: When datcom-fltcon-class is used as a subobject of datcom-source-class, the
following properties will (by default), get their values from datcom-source-class: mach-
numbers, flight-conditions-angle-mode, angles-of-attack, sideslip-angles, total-angles-of-
attack, and roll-angles.

This class provides the entries for the FLTCON namelist in the Datcom input file.

Datcom Entry |Corresponding Property Datcom Entry |Corresponding Property

NALPHA automatic MACH mach-numbers

ALPHA angles-of-attack, total-| |REN reynolds-numbers
angles-of-attack

BETA sideslip-angles ALT altitude

PHI roll-angles HYPER newtonian-flow?
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NMACH automatic

SOSE second-order-shock-
expansion?

Inherit-From:

(object)

Properties:

mach-numbers

A list of the Mach numbers for which aerodynamic coefficients should
be computed (e.g., (0.7 0.8 0.9 1.2 1.5)). The formula of this
property should normally not be overridden. The default formula
is (default nil).

flight-conditions-angle-mode  The orientation of the vehicle can be specified using either the

angles-of-attack

sideslip-angles

total-angles-of-attack

roll-angles

conditions-specifier

body axes angles or total angles. If the value is 'body-axes, then
the properties angles-of-attack and sideslip-angles must be given
values. If the value is fotal, then the properties total-angles-of-
attack and roll-angles must be given values. If the flight-
conditions-object property points to an instance of fight-
conditions-class, then the value of fight-conditions-angle-mode
will be taken from that object. Allowable values for flight-
conditions-angle-mode are 'body-axes and "total. The formula of
this property should normally not be overridden. The default
formula is (default 'body-axes).

A list of the angles of attack for which aerodynamic coefficients should
be computed (e.g., '(0.0 5.0 10.0 15.0). This property will only be
used when flight-conditions-angle-mode is 'body-axes. The
formula of this property should normally not be overridden. The
default formula is (default nil)

A list of the sideslip angles (in degrees) for which aerodynamic
coefficients should be computed (e.g., (0.0 2.0 4.0 8.0). This
property will only be used when flight-conditions-angle-mode is
‘body-axes. The formula of this property should normally not be
overridden. The default formula is (default nil).

A list of the total angles of attack (in degrees) for which aerodynamic
coefficients should be computed (e.g., '(0.0 5.0 10.0 15.0). This
property will only be used when Aight-conditions-angle-mode is
total. The formula of this property should normally not be
overridden. The default formula is (default nil).

A list of the roll angles (in degrees) for which aerodynamic coefficients
should be computed (e.g., (0.0 2.0 4.0 6.0). This property will
only be used when flight-conditions-angle-mode is ‘total. The
formula of this property should normally not be overridden. The
default formula is (default nil).

Flight conditions can be specified for a range of altitudes or Reynold's
numbers. When conditions-specifier has a value of 'ren, the
reynolds-numbers property should contain a list of Reynold's
numbers for which aerodynamic coefficients will be computed.
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reynolds-numbers

altitude

When conditions-specifier has a value of ‘alt, the altitude property
should contain a list of altitudes for which aerodynamic
coefficients will be computed. The default value is ‘alt.

When conditions-specifier has a value of 'ren, then this property should
contain a list of Reynold's numbers at which aerodynamic
coefficients should be computed. The number of Reynold's
numbers specified should correspond to the number of mach-
numbers. The default is a list with all elements equal to 1E6.

When conditions-specifier has a value of ‘alt, then this property chould
contain a list of altitudes for which aerodynamic coefficients will
be computed. The number of altitudes specified should correspond
to the number of mach-numbers. The default is a list with all
elements equal to 0.0.

second-order-shock-expansion? ~ When the value of this property is ¢, the SOSE card will be

newtonian-flow?

included in the Datcom input file. When #i/, it will not.

When the value of this property is 7, the HYPER card will be included

in the Datcom input file. When #nil, it will not.

datcom-refg-class [Class]

This class is used as a subobject of datcom-source-class.

This class provides the entries for the REFQ namelist in the Datcom input file.

Datcom Entry|Corresponding Property Datcom Entry|Corresponding Property

SREF reference-area XCG cg-position-longitudinal,
trim-cg-position-
longitudinal

LREF reference-length- 7CG cg-position-vertical

longitudinal

LATREF reference-length-lateral SCALE scale-factor

ROUGH surface-roughness BLAYER boundary-layer-type

RHR roughness-rating
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Inherit-From:

(object)

Properties:

fuselage-object

reference-area

This property should point to an instance of class datcom-fuselage-
interface-class. Normally, this is done by getting its value from the
Juselage-interface-object property of its parent, the datcom-
fuselage-interface-class. The formula for this property should be
Mfuselage-interface-object.

The reference area of the vehicle. When fuselage-object points to an
instance of datcom-fuselage-interface-class, this value will be
found automatically from that object. The formula of this property
should normally not be overridden.

reference-length-longitudinal The vehicle longitudinal reference length. When fuselage-object

reference-length-lateral

roughness-specifier

surface-roughness

roughness-rating

cg-position-longitudinal

points to an instance of datcom-fuselage-interface-class, this value
will be found automatically from that object. The formula of this
property should normally net be overridden.

The vehicle lateral reference length. When Juselage-object points to an
instance of datcom-fuselage-interface-class, this value will be
found automatically from that object. The formula of this property
should normally not be overridden.

Specifies whether the surface-roughness or roughness-rating property
will be sent to Datcom. When roughness-specifier is 'rough, the
surface-roughness will be given. When roughness-specifier is 'rhr,
the roughness-rating will be given. The default value is 'rough.

A value for the vehicle surface roughness. This will only be written
when roughness-specifier is 'rough. The default value is 0.0.

A value for the vehicle roughness rating. This will only be written
when roughness-specifier is 'rhr. The default value is 0.0.

The longitudinal position of the vehicle center of gravity. This value
will be written when coefficients are computed in non-trim cases.
The default value is 0.0.

trim-cg-position-longitudinal  The longitudinal position of the vehicle center of gravity under trim

cg-position-vertical

scale-factor

boundary-layer-type

conditions. This value will be written when trim coefficients are
computed. The default value is 52% of the vehicle length when
fuselage-object is specified and 0.0 when it is not.

The vertical position of the vehicle center of gravity. The same value
will be used for trim and non-trim conditions. The default value is
0.0.

A scale factor used to multiply vehicle dimensions (other than reference
dimensions). The default value is 1.0.

A specifier for the type of boundary conditions to be used. The
available options are 'turb and ‘natural. The default value is "turb.
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datcom-trim-class

[Class]

This class is used as a subobject of datcom-source-class.

This class provides the entries for the TRIM namelist in the Datcom input file.

Datcom Entry|Corresponding Property Datcom Entry|Corresponding Property
SET trim-fin-set-object DELMIN minimum-deflection
PANL use-panel-flags-list DELMAX  |maximum-deflection
ASYM flip-panel-deflection-list
Inherit-From:

(object)
Properties:

datcom-finset-properties-objectThis property should point to an instance of datcom-finset-

minimum-deflection
maximum-deflection

use-panel-flags-list

flip-panel-deflection-list

properties-class. Normally, this should point to the finsets
subobject of the datcom-source-class object. The formula for this
property should be “Yinsets.

The minimum deflection value allowed for fins during trim
computations. The default value is —25.0.

The maximum deflection value allowed for fins during trim
computations. The default value is 25.0.

A list of values (either ¢ or nil) which indicate the panels of a finset
which that can be deflected during trim computations. The default
value will be a list with all # elements (all panels can be deflected).

A Tlist of values (either ¢ or nil) which indicate whether the sign of
deflections should be reversed. The default value will be a list of
all nil elements (all panels with normal deflection).
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datcom-finset-properties-class [Class]

This class is used as a subobject of datcom-source-class.

This class acts as an intermediate object between the wing descriptions in instances of
datcom-wing-set-interface-class and Datcom. Normally, nothing should be changed in
this class.

This class provides the entries for the FINSET namelists in the Datcom input file. The
actual values are obtained from the datcom-wing-set-interface-class objects referenced by
source-wing-sets.

Inherit-From:

(object)

Properties:

source-wing-sets This property should contain a list of references to instances of datcom-
wing-set-interface-class. Normally, this is done by getting its
value from the wing-set-geometry-objects property of its parent,
the datcom-source-class. The formula of this property should be
Mwing-set-geometry-objects.

sorted-source-wing-sets A list of the instances specified in source-wing-sets in order from
vehicle nose to tail. This should not be changed by the user.

datcom-body-properties-class [Class]

This class is used as a subobject of datcom-source-class.

This class acts as an intermediate object between the fuselage description in an instance
of datcom-fuselage-interface-class and Datcom. Normally, nothing should be changed in
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this class.

The information written to the Datcom input file will either be geometry based or from
aerodynamic coefficients depending on the settings of the properties. Control of this
behavior should be through the properties of the datcom-fuselage-interface-class instead
of this object.

This class provides the entries for the ELLBOD or AXIBOD namelist in the Datcom
input file.

Inherit-From:

(object)

Properties:

fuselage-interface-object This property should point to an instance of datcom-fuselage-interface-
class. Normally, this is done by getting its value form the fuselage-
interface-object property of its parent, the datcom-source-class.
The formula of this property should be “Yfuselage-interface-object.

fuselage-aero-coeffs-source-object This property should point to an instance of aerodynamic-
coefficients-source-class if aerodynamic coefficients describing the
body should be used instead of a geometric description. By
default, the value of this property comes from the object pointed to
by fuselage-interface-object and it should not be changed by the
user.

datcom-protuberance-set-properties-class [Class]

This class is used as a subobject of datcom-source-class.

This class acts as an intermediate object between the protuberance set descriptions in an
instance of datcom-protuberances-interface-class and Datcom. Normally, nothing should
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be changed in this class.

This class provides the entries for the PROTUB namelist in the Datcom input file.

Inherit-From:

(object)

Properties:

protuberance-set-source-object This property should point to an instance of datcom-
protuberances-interface-class. Normally, this is done by getting
its value from the protuberance-set-source-object property of its
parent, the datcom-source-class. The formula of this property
should be protuberance-set-source-object.

datcom-inlet-properties-class [Class]

This class is used as a subobject of datcom-source-class.

This class acts as an intermediate object between the inlet description in an instance of
datcom-inlet-interface-class and Datcom. Normally, nothing should be changed in this
class.

This class provides the entries for the INLET namelist in the Datcom input file.

Inherit-From:

(object)
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Properties:

inlet-source-object This property should point to an instance of datcom-inlet-interface-
class. Normally, this is done by getting its value from the inlet-
source-object property of its parent, the datcom-source-class. The
formula of this property should be “inlet-source-object.

datcom-fuselage-interface-class _ [Class]

This class is used to provide an interface between fuselage information and Datcom. All
input required for Datcom can be specified with properties of this object. Additional
methods for providing information are also provided.

The information provided to Datcom to describe the vehicle fuselage can be either
geometric or aecrodynamic. In the case of geometric data, properties describing the shape
of the nose, center, and aft sections of the fuselage must be provided. For the case of
aerodynamic data, a reference to an instance of aerodynamic-coefficients-source-class
must be provided. If coefficients are to be provided, the property aero-coeffs-source-
object must point to an instance of aerodynamic-coefficients-source-class. The geometric
properties will be ignored. If aero-coeffs-source-object is nil, then the geometric
properties will be used.

When the fuselage description is based on geometry, the actual properties describing the
nose, center, and aft section geometry are contained in subobjects of datcom-fuselage-
interface-class:  nose-info, center-body-info, and aft-body-info. The datcom-input
properties of datcom-fuselage-interface-class get their values from the corresponding
properties of these subobjects.

Reference Properties:

The reference properties reference-area, reference-diameter-longitude, reference-
diameter-latitude, and body-length may have their values computed directly from
geometry; found from a body-geometry-interface-class object; found based on the
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properties of the nose, body, and aft subobjects; or entered directly as values. If the
geometry-source-object property points to an object of class body-geometry-interface-
class, then the reference properties will be taken from that object. When the geometry-
source-object property points to an object with a geom, the reference properties will be
determined from that geom if the cs-info property is not nil (see Cross-Section Query
Properties below). To determine the reference properties from the nose, body, and aft
subobjects, geometry-source-object should have a value of nil. Directly entering values
for the reference properties will override this behavior.

Cross-Section Query Properties:

The reference properties and some of the nose, body, and aft geometric properties can be
determined directly from a vehicle fuselage geom. If the geometry-source-object property
points to an object with a geom, the ¢s-info property will contain information describing
the geometry of the fuselage at locations distributed along its length. The properties
which control the determination of cross-section information are cs-query-point, cs-
query-vector, Cs-query-coord-sys, and cs-query-cut-spacing. The cross-section-query
property is an instance of the class which computes the query results and should not be
changed.

This object provides the entries for the fuselage (AXIBOD or ELLBOD) namelist in the
Datcom input file. The actual Datcom input is written from and instance of datcom-body-
properties-class which references an instance of datcom-fuselage-interface-class.

This class provides entries for the AXIBOD or ELLBOD namlist in the Datcom input
file.

Datcom Entry |Corresponding Default Source|Source Subobject
Property Subobject Property

LNOSE datcom-input-Inose nose-info nose-length

DNOSE datcom-input-dnose  |nose-info nose-diameter
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¥

WNOSE datcom-input-dnose  |nose-info nose-diameter
TNOSE datcom-input-tnose  |nose-info nose-type
BNOSE datcom-input-bnose  |nose-info nose-bluntness
TRUNC datcom-input-trunc  |nose-info nose-truncated?
ENOSE datcom-input-enose  |nose-info nose-ellipticity
POWER datcom-input-power  |nose-info nose-power
datcom-input-nose-  |nose-info nose-cs-shape
shape
LCENTR datcom-input-lcentr  |center-body-info center-length
DCENTR datcom-input-dcentr  |center-body-info center-diameter
WCENTR  |datcom-input-dcentr |center-body-info center-diameter
ECENTR datcom-input-ecentr  |center-body-info center-ellipticity
datcom-input-center- |center-body-info center-cs-shape
shape
LAFT datcom-input-laft aft-body-info aft-length
DAFT datcom-input-daft aft-body-info aft-diameter
WAFT datcom-input-daft aft-body-info aft-diameter
DEXIT datcom-input-dexit aft-body-info exit-diameter
TAFT datcom-input-taft aft-body-info aft-type
EAFT datcom-input-eaft aft-body-info aft-ellipticity

datcom-input-aft-
shape

aft-body-info

aft-cs-shape

datcom-input-base-
E)

aft-body-info

ignore-base-drag?
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drag?

Inherit-From:

(datcom-input-source-object-mixin)

Properties:

aero-coeffs-source-object If this property points to an instance of aerodynamic-coefficients-

geometry-source-object

cs-query-point

cs-query-vector

cs-query-coord-sys

cs-query-cut-spacing

cross-section-query

cs-info

ref-info

reference-area

source-class, then the aerodynamic coefficients provided by that
object will be sent to Datcom instead of information describing the
fuselage geometry. If the value of this property is nil, then the
geometric properties will be written.

This property should point to an object which has a geom representing
the overall fuselage geometry or to an instance of body-geometry-
interface-class which describes the fuselage. When it does, that
geometry can be used to determine reference and cross-section
properties.

The cross-section cuts will be made along the fuselage in the cs-query-
vector direction starting at this point. The default value is '(0.00.0
0.0).

This property contains the direction along which cross-section cuts will
be made. The default value is (1.0 0.0 0.0).

This property should point to an instance of coordinate-system-class in
which the cs-query-point and cs-query-vector are defined. The
default value of »il indicates the global coordinate system.

This value of this property is the spacing between cross-section cuts
that are made in the fuselage. The default value is 1.0.

This property is actually an instance of the class cross-section-
parameters-along-axis-class. This object is used to determine the
cross-section properties of the fuselage distributed along the length
of the fuselage. This object should not be changed by the user.

This property contains the results of the cross-section query operation.
The formula and value of this property should normally not be
changed by the user.

This property contains the results of internal queries for the reference
geometric properties of the fuselage (as described above). Ifthe
queries are not successful, the value of this property will be nil. If
successful, it will contain a list of values: (reference-area
reference-diameter-latitude reference-diameter-longitude body-
length).

The reference cross-sectional area of the vehicle fuselage. By default,
this will be the first value in the list contained in ref-info. If ref-
info is nil, the default value of 1.0 will be used.

reference-diameter-longitude The longitudinal reference diameter of the vehicle fuselage. By

default, this will be the third value in the list contained in ref-info.
If ref-info is nil, the default value of 1.0 will be used.
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reference-diameter-latitude ~ The lateral reference diameter of the vehicle fuselage. By default,
this will be the second value in the list contained in ref-info. If ref-
info is nil, the default value of 1.0 will be used.

body-length The reference length of the vehicle fuselage. By default, this will be the
fourth value in the list contained in ref-info.

The default values of the following properties come from the values of properties in the
subobjects of the datcom-fuselage-interface-class. The locations and names of these
properties are given in the table above. A description of the properties can be found in
the class definitions of their respective subobjects. The values of the subobject properties
can be overridden by giving the datcom-fuselage-interface-class properties values
directly.

datcom-input-Inose
datcom-input-dnose
datcom-input-lcentr
datcom-input-dcentr
datcom-input-laft
datcom-input-daft
datcom-input-dexit
datcom-input-base-drag?
datcom-input-tnose
datcom-input-bnose
datcom-input-trunc
datcom-input-enose
datcom-input-nose-shape
datcom-input-taft
datcom-input-eaft
datcom-input-aft-shape
datcom-input-ecentr
datcom-input-center-shape
datcom-input-power

datcom-wing-set-interface-class [Class]

This object provides an interface between wing geometry and Datcom. If the source-
object property points to an instance of wing-set-class, then the values of the other
properties will be taken directly from that object (with the exception of deflection-
angles). If source-object is nil, then all values must be set by the user.

This object provides the entries for the FINSET namelist in the Datcom input file. If the
airfoil section type is NACA, it also provides information for the corresponding NACA
entry in the input file.
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Datcom Entry |Corresponding Property Datcom Entry |Corresponding Property
SECTYP section-type ZUPPER wing-set-profile-info
SSPAN semi-spans ZLLOWER wing-set-profile-info
CHORD chords LMAXU wing-set-profile-info
XLE xle LMAXL wing-set-profile-info
SWEEP sweep-angles LFLATU wing-set-profile-info
STA sweep-stations LFALTL wing-set-profile-info
NPANEL npanel LER wing-set-profile-info
PHIF wing-phis CFOC flap-chord-ratios
GAMMA wing-gammas

Inherit-From:

(datcom-input-source-object-mixin)

Properties:

source-object If this property points to an instance of wing-set-class, the values of the
other properties in this object will be taken directly from that
object (with the exception of deflection-angles). By default, this
property has a value of nil and all values must be entered manually.

section-type The section type of the airfoil used for the wing. Allowed values are
'hex, 'maca, ‘arc, and ‘user. The default value is nil. The object
does not support passing ‘user-related information to Datcom.

semi-spans A list of the span positions of each airfoil section. The default value in
manual mode is '(0.0 1.0).

chords A list of the chords of each airfoil section. The default value in manual
mode is '(1.0 1.0).

xle The position along the fuselage of the front of the root airfoil. The
default value in manual mode is 0.0.

sweep-angles The sweep angles between airfoils. The default value in manual mode

is '(0.0).
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sweep-stations
npanel
wing-phis
wing-gamimas

deflection-angles

xhinge

hinge-skew-angle
flap-chord-ratios

wing-set-profile-info

The relative position in each airfoil where sweep is measured. The
default value in manual mode is '(0.0).

The number of wings in this wing set. The default value in manual
mode is equal to the number of angles specified in wing-phis.

The angular positions (about the fuselage) of the wings in this wing set.
The default value in manual mode is '(0.0).

The root dihedral angles of the wings in this wing set. The default
value in manual mode is '(0.0).

The control-surface deflection angles of each wing in the wing set. The
default value is nil. Even when source-object points to a wing-set-
class, this value must be entered manually.

The distance of the control surface hinge from the vehicle nose. The
default value in manual mode is 0.0.

The location along the airfoil chord of the flap leading edge. The
default value in manual mode is '(0.0 0.0).

A list of information which describes the airfoil profiles. The contents
of this list will depend on the airfoil type (section-type). For the
'hex and ‘arc airfoil sections, different values may be entered for
each airfoil along the span.

‘hex: (list 'hex

(list of thickness-to-chord-ratio-upper)
(list of thickness-to-chord-ratio-lower)
(list of leading-edge-ratio-upper)
(list of leading-edge-ratio-lower)
(list of flat-ratio-upper)
(list of flat-ratio-lower)
(list of leading-edge-radius)
)
‘arc: (list 'arc
(list of thickness-to-chord-ratio-upper)
(list of thickness-to-chord-ratio-lower)
(list of leading-edge-radius)
)
'naca: (list 'naca
naca-series-type
naca-series-number

)

datcom-protuberances-interface-class [Class]

This object provides an interface between protuberance geometry and Datcom.

This object provides the entries for the PROTUB namelist in the Datcom input file.

Datcom Entry |Corresponding Property Datcom Entry |Corresponding Property
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NPROT LPROT

PTYPE WPROT
XPROT HPROT
XLOC OPROT
Inherit-From:

(datcom-input-source-object-mixin)

Properties:

source-objects

num-protuberance-sets

num-protuberances

This property should point to an instance of protuberance-series-class.
The values written to the Datcom input file will be taken from this

object.

The number of protuberance sets referred to in source-objects. This
should not be changed by the user.

The total number of protuberances in all protuberance sets. This should
not be changed by the user.

datcom-inlet-interface-class

[Class]

This object provides an interface between inlet geometry and Datcom. If the inlet-
geometry-object property points to an instance of inlet-set-class, then the values of the

other properties will be taken directl

then all values must be set by the user.

y from that object. If inlet-geometry-object is nil,

This object provides the entries for the INLET namelist in the Datcom input file.

Datcom Entry

Corresponding Property

Datcom Entry

Corresponding Property

NIN

datcom-input-nin

X

datcom-input-x

INTYPE

datcom-input-intype

H

datcom-input-h
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XINLT datcom-input-xinit w datcom-input-w
XDIV datcom-input-xdiv COVER datcom-input-cover
HDIV datcom-input-hdiv RAMP datcom-input-ramp
LDIV datcom-input-ldiv ADD datcom-input-add
PHI datcom-input-phi MFR datcom-input-mfr
Inherit-From:

(datcom-input-source-object-mixin)

Properties:

inlet-geometry-object If this property points to an instance of inlet-set-class, the values of the

other properties in this object will be taken directly from that
object. By default, this property has a value of nil and all values
must be set manually.

inlet-interface-data If inlet-geometry-object points to an instance of inlet-set-class, then the

inlet geometry properties in the class will be set automatically.

The default values of the following properties are obtained directly from the object
pointed to by inlet-geometry-object. The values may be set or overridden by giving the
datcom-inlet-interface-class properties values directly.

datcom-input-nin
datcom-input-intype
datcom-input-xinlt
datcom-input-xdiv
datcom-input-hdiv
datcom-input-ldiv
datcom-input-phi
datcom-input-x
datcom-input-h
datcom-input-w
datcom-input-cover
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datcom-input-ramp
datcom-input-add
datcom-input-mfr

datcom-nose-interface-class

[Class]

This class is normally used as a subobject of datcom-fuselage-interface-class. It acts as
an interface between the vehicle nose geometry and the Datcom fuselage information. If
all Datcom properties are being set manually, they can be changed in the datcom-
fuselage-interface-class and this class may be ignored.

This class can operate in three different modes based on the value of the source-mode
property: local, fuselage, and manual. The following table summarizes the input required
for different values of source-mode.
requirements are not met, then all input will be manual.

If the "user provides”" and "can compute”

source-mode | 'manual Tocal fuselage

is

user provides | nothing geometry-source-object nothing | fuselage-cs-
info

can compute nose-source- cs-info

info

nose-length manual automatic computed | manual computed

nose- manual automatic computed | manual computed

diameter

nose-type manual automatic manual manual manual

nose- manual automatic manual manual manual

bluntness

nose- manual automatic manual manual manual

truncated?

60




nose- manual automatic manual manual manual
ellipticity

nose-cs- manual automatic manual manual manual
shape

nose-power manual automatic manual manual manual

This class provides entries for the AXIBOD or ELLBOD namelist in the Datcom input

file.
Datcom Entry|Corresponding Property Datcom Entry |Corresponding Property
LNOSE nose-length TRUNC nose-truncated?
DNOSE nose-diameter ENOSE nose-ellipticity
TNOSE nose-type POWER nose-power
BNOSE nose-bluntness
Inherit-From:
(datcom-input-source-object-mixin)
Properties:

fuselage-geometry-source-object ~ This property should contain a the-reference to an instance of
an object with a geom which represents the vehicle fuselage. This
is available for reference but is not used by this object. Normally,
the value of this property is available from the object's parent and
its default formula ~geometry-source-object should not be

fuselage-cs-info

changed.
This property contains information that describes cross-section

information for the fuselage. Normally, the value of this property
is available from the object's parent and its default formula “cs-

info should not be changed.




source-mode

geometry-source-object

nose-source-info

nose-info

nose-length

nose-diameter

nose-type

nose-bluntness

nose-truncated?

nose-ellipticity

nose-cs-shape

nose-power

cs-query-point

cs-query-vector

cs-query-coord-sys

¢s-query-cut-spacing

Cross-section-query

This property is used to specify where the values of the properties
describing the nose geometry should come from. Allowed values
are 'fuselage, 'local, and ‘manual.

The object instance pointed to by this property is used differently
depending on the value of source-mode.

If the source-mode is 'local and the geometry-source-object points to a
Datcom fuselage or nose geometry object, then this property will
contain geometric information from that object. If these conditions
are not met, then this property will have a value of nil. The
formula of this property should not be changed by the user.

This property will contain geometric information about the nose which
depends on the values of other properties in this object. The
formula of this property should not be changed by the user.

The length of the vehicle nose. The default value depends on source-
mode (see above). In manual mode the default value is 1.0

The diameter of the vehicle nose. The default value depends on source-
mode (see above). In manual mode the default value is 1.128.

The type of vehicle nose. The allowed values are ‘cone, ‘ogive, ‘power,
karman, and 'hack. In manual mode, the default value is ‘cone.

The bluntness of the vehicle nose. The default value depends on
source-mode (see above). In manual mode, the default value is
0.0.

Indicates whether the nose is truncated or not. Allowed values are ¢ and
nil. The default value depends on source-mode (see above). In
manual mode the default value is i/,

Indicates the ellipticity of the nose when nose-cs-shape is ‘elliptical.
The default value depends on source-mode (see above). In manual
mode the default value is 1.0.

Indicates whether the cross-sections of the nose are circular or
elliptical. Allowed values are ‘circular and ‘elliptical. The default
value depends on source-mode (see above). In manual mode the
default value is ‘circular.

The power of the nose shape when nose-type is ‘power. The default
value depends on source-mode (see above). In manual mode the
default value is 1.0.

The cross-section cuts will be made along the nose geometry in the cs-
query-vector direction starting at this point. The default value is
(0.0 0.0 0.0). This property is only required when the source-
mode is 'local and nose-source-info is nil.

This property contains the direction along which cross-section cuts will
be mad. The default value is (1.0 0.0 0.0). This property is only
required when the source-mode is 'local and nose-source-info is
nil.

This property should point to an instance of coordinate-system-class in
which the cs-query-point and cs-query-vector are defined. The
default value of nil indicates the global coordinate system. This
property is only required when the source-mode is "local and nose-
source-info is nil.

The value of this property is the spacing between the cross-section cuts
that are made in the nose geometry. The default value is 1.0. This
property is only required when the source-mode is 'local and nose-
source-info is nil.

This property is actually an instance of the class cross-section-
parameters-along-axis-class. This object is used to determine the
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cross-section properties of the nose geometry distributed along its
length. This object should not be changed by the user.

cs-info This property contains the results of the cross-section query operation
and is normally only demanded when the source-mode is local and
nose-source-info is nil. The formula and value of this property
should normally not be changed by the user.

datcom-center-body-interface-class [Class]

This class 1s normally used as a subobject of datcom-fuselage-interface-class. Tt acts as
an interface between the vehicle center-body geometry and the Datcom fiiselage
information. If all Datcom properties are being set manually, they can be changed in the
datcom-fuselage-interface-class and this class my be ignored.

This class can operate in three different modes based on the value of the source-mode
property: local, fuselage, and manual. The following table summarizes the input required
for different values of source-mode. If the "user provides" and "can compute"
requirements are not met, then all input will be manual.

source-mode | 'manual "local fuselage

is

user provides | nothing geometry-source-object nothing | fuselage-cs-
info

can compute center-body- cs-info

source-info

center-length | manual automatic computed | manual computed

center- manual automatic computed | manual computed

diameter

center- manual automatic manual manual manual

ellipticity

center-cs- manual automatic manual manual manual

shape
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Note: Currently, a source-mode of Juselage is not supported and it will work like

'manual.

This class provides entries for the AXIBOD or ELLBOD namelist in the Datcom input

file.

Datcom Entry |Corresponding Property Datcom Entry|Corresponding Property

LCENTR center-length

ECENTR center-ellipticity

DCENTR center-diameter

Inherit-From:

(datcom-input-source-object-mixin)

Properties:

fuselage-geometry-source-object  This property should contain a the-reference to an instance of

fuselage-cs-info

source-mode

geometry-source-object

center-length

center-diameter

an object with a geom which represents the vehicle fuselage. This
is available for reference but is not used by this object. Normally,
the value of this property is available from the object's parent and
its default formula Mgeometry-source-object should not be
changed.

This property contains information that describes cross-section
information for the fuselage. Normally, the value of this property
is available from the object's parent and its default formula “cs-
info should not be changed.

This property is used to specify where the values of the properties
describing the nose geometry should come from. Allowed values
are 'fuselage, 'local, and ‘manual. Currently, fuselage is not
supported and will behave like ‘manual.

The object instance pointed to by this property is used differently
depending on the value of source-mode.

The length of the vehicle center body. The default value depends on
source-mode (see above). In manual mode the default value is 1.0.

The diameter of the vehicle center body. The default value depends on
source-mode (see above). In manual mode the default value is
1.128.
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center-ellipticity Indicates the ellipticity of the center body when center-cs-shape is
‘elliptical. The default value depends on source-mode (see above).
In manual mode the default value is 1.0

center-cs-shape Indicates whether the cross-sections of the nose are circular or
elliptical. Allowed values are ‘circular and ‘elliptical. The default
value depends on source-mode (see above). In manual mode the
default value is ‘circular.

cs-query-point The cross-section cuts will be made along the center body geometry in
the cs-query-vector direction starting at this point. The default
value is '(0.0 0.0 0.0). This property is only required when the
source-mode is 'local and nose-source-info is nil.

cs-query-vector This property contains the direction along which cross-section cuts will
be mad. The default value is ‘(1.0 0.0 0.0). This property is only
required when the source-mode is 'local and nose-source-info is
nil.

cs-query-coord-sys This property should point to an instance of coordinate-system-class in
which the cs-query-point and cs-query-vector are defined. The
defautl value of nil indicates the global coordinate system. This
property is only required when the source-mode is 'local and nose-
source-info is nil.

cs-query-cut-spacing The value of this property is the spacing between the cross-section cuts
that are made in the center body geometry. The default value is
1.0. This property is only required when the source-mode is local
and nose-source-info is nil.

cross-section-query This property is actually an instance of the class cross-section-
parameters-along-axis-class. This object is used to determine the
cross-section properties of the center body geometry distributed
along its length. This object should neot be changed by the user.

cs-info This property contains the results of the cross-section query operation
and is normally only demanded when the source-mode is 'local and
center-body-source-info is nil. The formula and value of this
property should normally not be changed by the user.

datcom-aft-body-interface-class [Class]

This class is normally used as a subobject of datcom-fuselage-interface-class. It acts as
an interface between the vehicle aft body geometry and the Datcom fuselage information.
If all Datcom properties are being set manually, they can be changed in the datcom-
fuselage-interface-class and this class may be ignored.

This class can operate in three different modes based on the value of the source-mode
property: local, fuselage, and manual. The following table summarizes the input required
for different values of source-mode. If the "user provides" and "can compute”
requirements are not met, then all input will be manual.
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source-mode | 'manual "local Suselage
is
user provides | nothing geometry-source-object nothing | fuselage-cs-
info

can compute aft-body- cs-info

source-info
aft-length manual automatic computed | manual computed -
aft-diameter | manual automatic computed | manual computed
Jforward- manual automatic computed | manual computed
diameter
exit-diameter | manual automatic
ignore-base- | manual manual manual manual manual
drag?
aft-type manual automatic manual manual manual
aft-ellipticity | manual automatic manual manual manual
aft-cs-shape manual automatic manual manual manual

Note: Currently, a source-mode of fuselage is not supported and it will work like

'manual.

This class provides entries for the AXIBOD or ELLB

OD namelist in the Datcom input

file.
Datcom Entry |Corresponding Property Datcom Entry |Corresponding Property
LAFT aft-length TAFT aft-type
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DAFT aft-diameter EAFT aft-ellipticity
DEXIT exit-diameter
Inherit-From:
(datcom-input-source-object-mixin)
Properties:

fuselage-geometry-source-object

fuselage-cs-info

source-mode

geometry-source-object

aft-length

aft-diameter

forward-diameter
exit-diameter
ignore-base-drag?
aft-type

aft-ellipticity

aft-cs-shape

This property should contain a the-reference to an instance of
an object with a geom which represents the vehicle fuselage. This
is available for reference but is not used by this object. Normally,
the value of this property is available from the object's parent and
its default formula geometry-source-object should not be
changed.

This property contains information that describes cross-section
information for the fuselage. Normally, the value of this property
is available from the object's parent and its default formula ~cs-
info should not be changed.

This property is used to specify where the values of the properties
describing the aft body geometry should come from. Allowed
-values are 'fuselage, 'local, and ‘'manual. Currently, fuselage is not
supported and will behave like ‘manual.

The object instance pointed to by this property is used differently
depending on the value of source-mode.

The length of the vehicle aft body. The default value depends on
source-mode (see above). In manual mode the default value is 1.0.

The diameter of the aft end of the vehicle aft body. The default value
depends on source-mode (see above). In manual mode the default
value is 1.128.

The diameter of the front of the vehicle aft body. The default value
depends on source-mode (see above).

The type of vehicle aft body. The allowed values are ‘cone, ‘conical,
and ‘ogive. In manual mode the default value is ‘conical.

Indicates the ellipticity of the nose when aft-cs-shape is 'elliptical. The
default value depens on source-mode (see above). In manual mode
the default value is 1.0.

Indicates whether the cross-sections of the aft body are circular or
elliptical. Allowed values are ‘circular and ‘elliptical. The default
value depens on source-mode (see above). In manual mode the
default value is ‘circular.
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cs-query-point

¢s-query-vector

cs—query—coord—sys

Cs-query-cut-spacing

cross-section-query

The cross-section cuts will be made along the aft body geometry in the
cs-query-vector direction starting at this point. The default value is
(0.0 0.0 0.0). This property is only required when the source-
mode is 'local and nose-source-info is nil.

This property contains the direction along which cross-section cuts will
be mad. The default value is '(1.0 0.0 0.0). This property is only
required when the source-mode is 'local and nose-source-info is
nil.

This property should point to an instance of coordinate-system-class in
which the cs-query-point and cs-query-vector are defined. The
defautl value of il indicates the global coordinate system. This
property is only required when the source-mode is 'local and nose-
source-info is nil.

The value of this property is the spacing between the cross-section cuts
that are made in the aft body geometry. The default value is 1.0.
This property is only required when the source-mode is ‘local and
nose-source-info is nil.

This property is actually an instance of the class cross-section-
parameters-along-axis-class. This object is used to determine the
cross-section properties of the aft body geometry distributed along
its length. This object should not be changed by the user.

cs-info This property contains the results of the cross-section query operation
and is normally only demanded when the source-mode is ‘local and
aft-body-source-info is nil. The formula and value of this property
should normally not be changed by the user.
datcom-input-sou rce-object-mixin [Class]

This class exists to provide a common class for the interface classes to inherit from. It
adds no special properties or behavior.

Inherit-From:

(object)

Properties:

68




Appendix 4: AML Panair Interface Documentation

This documentation assumes that the user is familiar with the parameters required for the
PANAIR input file.

The basic-panair-class provides the primary interface to the PANAIR application.
Control of PANAIR is through properties in this object and in its children. Additional
subobjects will need to be added (particularly to the networks subobject) to interface to
the vehicle geometry.

All of the capabilities of this interface to PANAIR can be accessed through properties.
Users will normally not need to call any methods.

The basic-panair-class object will compute results for multiple values of angle of attack,
sideslip angle, and Mach numbers by performing multiple runs of PANAIR. Typically,
the ability to run multiple solutions of during one run of PANAIR, although available, is
not used. This functionality is discussed under the panair-onset-flow-conditions-
properties-class documentation.

Two classes are provided. The basic-panair-class provides the basic interface to
PANAIR. The panair-class inherits from this class and adds the common aerodynamic
coefficient access interface provided by aerodynamic-coefficients-source-class.

basic-panair-class [Class]

This class provides the primary interface to the PANAIR application.

The basic-panair-class has several subobjects, most of which have properties that should
be changed by the user. In order to change the values or formulas of these properties,
new classes will need to be created (inheriting from the originals) with replacement
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formulas and put in the subobjects section of a new class inheriting from basic-panair-
class. The subobjects, their classes, and whether they contain user-editable properties are
summarized in this table:

Subobject Name Subobject Class User
Editable?

title-properties panair-title-properties-class yes

run-type-properties panair-run-type-properties-class yes

flow-symmetry-properties panair-flow-symmetry-properties-class | yes

onset-flow-conditions- panair-onset-flow-conditions- yes
properties properties-class

reference-data-properties panair-reference-data-properties-class | yes
networks panair-networks-class no

printout-control-properties panair-printout-control-properties-class | yes

boundary-layer-and- panair-boundary-layer-and-velocity- yes
velocity-correction-control- correction-control-properties-class

properties

liberalized-abutments- panair-liberalized-abutments- yes
properties properties-class

The flight conditions for each run of PANAIR will be determined from the properties
mach-numbers, angles-of-attack, and sideslip-angles. A separate run of PANAIR will be
made for each combination of the values in these properties. To make only a single
PANAIR run, each of these properties should contain a list with a single value.

PANAIR has an option to find multiple solutions during a single run for angles of attack
and sideslip angles close to the compressibility direction angles. This mode is normally
not used by basic-panair-class. To make a single PANAIR run with multiple solutions,
at least one of the properties mach-numbers, angles-of-attack, and sideslip-angles should
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have a value of nil. The flight conditions will then be written to the input file based on
the properties in the panair-onset-flow-conditions-properties-class subobject.

The results of the PANAIR runs are contained in the property component-coefficients.
The form of the results is a list of lists of data. In each list, the first list contains the flight
conditions and the second list contains the resulting coefficients. Each entry in the list

has the form:

((mach-number angle-of-attack sideslip-angle) (fx fy fz mx my mz area)).

The data is read from the PANAIR ffmf output file after each run.

Two logical paths are expected to be available when using the basic-panair-class. The
first, :panair-path, should point to the location of the PANAIR executable. The second,
-panair-user-data, should point to the parent directory where the data files for PANAIR
runs should be stored. This class will automatically create subdirectories under the path
specified by :panair-user-data.

Inherit-from:

(name-generator)

Properties:
mach-numbers A list of values to be used as the Mach number input for a PANAIR
angles-of-attack A lisl;u:f: values to be used as the angle of attack input for a PANAIR
sideslip-angles A lisrtu;lt: values to be used as the sideslip angle input for a PANAIR run.
body-length A reference vehicle length. This will be used in the automatic

computation of values in the panair-reference-data-properties-
class object. The default value is 1.0.

max-cross-section-area A reference vehicle area. This will be used in the automatic
computation of values in the panair-reference-data-proeprties-
class object. The default value is 1.0.

component-coefficients A list contéinjng the results of all of the PANAIR runs made. This
should not be changed by the user.
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panair-model-name This name will be written to the PANAIR input file and will be used as
the name of the directory in which data files are stored. The
default formula will append the date to the string "PANAIR-
MODEL".

panair-input-file-name The complete path and filename for the input file to PANAIR. The
default value is the panair-model-name with the extension ".inp" in
the directory specified by run-dir. This is the file that is written by
basic-panair-class before PANAIR is run.

panair-output-file-name  The complete path and filename for the main output file from PANAIR.
The default value is the panair-model-name with the extension
".out" in the directory specified by run-dir. Note: This is only
used when running on a UNIX system. On Windows systems, the
output file name will be "panair.out".

panair-command This property should contain a string containing the complete command
required to run PANAIR.
run-panair? Demanding this property will cause PANAIR to be run. The results

from the run will be stored in this property and component-
coefficients. They should be read from component-coefficients.
run-dir The property contains the complete path to the directory in which
PANAIR files will be written. By default, this property will get its
value from the directory property and automatically create the
directory if it does not already exist. This property should be
treated as an output and should not be changed by the user.
directory This property should contain the complete path to the directory in
which PANAIR files will be written. The default will be a
directory with the name panair-model-name in the directory
specified by the .panair-user-data logical path. This property
should be treated as an input. The actual directory being used
should be read from the run-dir property. Accessing that property
will automatically create the directory if it does not already exist.

Methods:
write-panair-properties

write-panair-deck

panair-title-properties-class [Class]

This class is used as a subobject of basic-panair-class and provides information for the
TITLE data block of the PANAIR input file. The strings contained in panair-modei-
name and title-lines will be put in this block.

Inherit-from:
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(panair-properties-class)

Properties:

panair-model-name A string which will be put as the first line in the TITLE data block. The
default formula will use the value of the panair-model-name of the
parent basic-panair-class.

title-lines A list of string which will be put, in order, in the TITLE data block
following panair-model-name. The default value is nil.

Methods:

write-panair-properties

panair-run-type-properties-class [Class]

This class is used as a subobject of basic-panair-class and provides information for the
SOLUTION, DATACHECK, and RESTART data blocks of the PANAIR input file. The
type of data block written will be based on the value of the program-control-mode

property.

Inherit-from:

(panair-properties-class)

Properties:

program-control-mode  The value of this property determines the mode in which PANAIR will
be run. This will determine which of the other properties will be
written into the PANAIR input file. Allowed values are ‘solution,
‘datacheck, and 'restart. The default value is 'solution.

ndtchk The NDTCHK parameter in the PANAIR input file. This parameter is
written when program-control-mode is 'datacheck. The default
value is 1.0.

nckusp The NCKUSP parameter in the PANAIR input file. This parameter is
written when program-control-mode is 'restart. The default value
is 0.0.
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nckaic The NCKAIC parameter in the PANAIR input file. This parameter is
written when program-control-mode is 'restart. The default value
is 1.0.

nckfam The NCKFAM parameter in the PANAIR input file. This parameter is
written when program-control-mode is 'restart. The default value
1s 1.0 if nckaic = 1.0 and 0.0 otherwise.

Methods:

write-panair-properties

panair-flow-symmetry-properties-class [Class]

This class is used as a subobject of basic-panair-class and provides information for the
SYMMETRY data block of the PANAIR input file.

Inherit-from:

(panair-properties-class)

Properties:
xzpln The XZPLN parameter in the PANAIR input file. The default value is
0.0.
xypln The XYPLN parameter in the PANAIR input file. The default value is
0.0.
Methods:
write-panair-properties
panair-onset-flow-conditions-properties-class [Class]

This class is used as a subobject of basic-panair-class and provides information for the
MACH, CASES, ANGLES, and YAW data blocks of the PANAIR input file. The
properties in this object are only used when the user does not specify values for the
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properties mach-numbers, angles-of-attack, and sideslip-angles. 1If all three of these
properties are specified, then the data blocks will be written based on their values and the
properties of this object will be ignored. If they are not all specified, then the data blocks
will be written based on the properties of this object.

The only way a single PANAIR run may be made with more than one angle of attack or
sideslip angle is by using the alpha and beta properties of this object.

If the properties mach-numbers, angles-of-attack, and sideslip-angles are given values in
the basic-panair-class object then any values given to properties of this object will be
ignored.

Inherit-from:

(panair-properties-class)

Properties:
amach The Mach number at which the simulation will be run. This is the
AMACH parameter in the PANAIR input file.
nacase The number of solution cases in the PANAIR run. This is the
NACASE parameter in the PANAIR input file. The default
formula is the minimum length of the alpha and beta property lists.
alpc The angle of attack direction of compressibility effects. This is the
ALPC parameter in the PANAIR input file.
alpha A list of up to four (4) angles of attack which will be used to compute
multiple solutions during a single PANAIR run. This is the
ALPHA() parameter in the PANAIR input file. The default
formula is a list with a single entry equal to the value of alpc.
betc The sideslip angle direction of compressibility effects.
beta A list of up to four (4) sideslip angles which will be used to compute
multiple solutions during a single PANAIR run. This is the
BETA() parameter in the PANAIR input file. The default formula
is a list with a single entry equal to the value of betc.
Methods:

write-panair-properties
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panair-reference-data-properties

[Class]

This class is used as a subobject of basic-panair-class and provides information for the
REFERENCE data block of the PANAIR input file.

Inherit-from:

(panair-properties-class)

Properties:
body-length

xref
yref
zref

sref

bref
cref

dref

Methods:

write-panair-properties

The length of the body. The default formula will get this value from the
body-length property of the parent basic-panair-class and should
not be changed. This property is used directly by PANAIR.

The x component of the moment reference location corresponding to
the XREF parameter in the PANAIR input file. The default value
is 52% of the body-length.

The y component of the moment reference location corresponding to
the YREF parameter in the PANAIR input file. The default value
is 0.0.

The z component of the moment reference location corresponding to
the ZREF parameter in the PANAIR input file. The default value
is 0.0.

The full airplane reference area corresponding to the SREF parameter
in the PANAIR input file. The default formula will get this value
from the max-cross-section-area property of the parent basic-
panair-class.

The reference length for MX corresponding to the BREF parameter in
the PANAIR input file. The default formula will compute the
radius of a circle with area equal to sref.

The reference length for MY corresponding to the CREF parameter in
the PANAIR input file. The default formula will use the value of
bref.

The reference length for MZ corresponding to the DREF parameter in
the PANAIR input file. The default formula will use the value of
bref.
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panair-printout-control-properties-class [Class]

This class is used as a subobject of basic-panair-class and provides information for the
PRINTOUT data block of the PANAIR input file.

Inherit-from:

(panair-properties-class)

Properties:

isings Corresponds to the ISINGS parameter in the PANAIR input file. The
default value is 0.0.

igeomp Corresponds to the IGEOMP parameter in the PANAIR input file. The
default value is 0.0. '

isingp Corresponds to the ISINGP parameter in the PANAIR input file. The
default value is 0.0. :

icontp Corresponds to the ICONTP parameter in the PANAIR input file. The
default value is 0.0.

ibconp Corresponds to the IBCONP parameter in the PANAIR input file. The
default value is 0.0.

iedgep Corresponds to the IEDGEP parameter in the PANAIR input file. The
default value is 0.0.

ipraic Corresponds to the IPRAIC parameter in the PANAIR input file. The
default value is 0.0.

nexdgn Corresponds to the NEXDGN parameter in the PANAIR input file.
The default value is 0.0.

ioutpr Corresponds to the IOPTR parameter in the PANAIR input file. The

' default value is 1.0.

ifmepr Corresponds to the IFMCPR parameter in the PANAIR input file. The
default value is 0.0.

icostp Corresponds to the ICOSTP parameter in the PANAIR input file. The
default value is 0.0.

Methods:

write-panair-properties

panair-boundary-layer-and-velocity-correction-control-properties-class [Class]

This class 1s used as a subobject of basic-panair-class and provides information for the
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BOUNDARY and VELOCITY data blocks of the PANAIR input file. The type of data
block written will be based on the value of the bl-or-ivcors? property.

Inherit-from:

(panair-properties-class)

Properties:

bl-or-ivcorr? This property determines whether the BOUNDARY or VELOCITY
data block will be written to the PANAIR input file. Allowed
values are ‘boundary and ‘velocity. The default value is ‘boundary.

ivcorr-boundary-layer The value of this property will be used as the IVCORR parameter in the
PANAIR input file when bl-or-ivcorr? has a value of ‘boundary.
The default value is 0.0.

ivcorr-velocity-correction The value of this property will be used as the IVCORR parameter in the
PANAIR input file when bl-or-ivcorr? has a value of velocity.

The default value is 0.0.
Methods:
write-panair-properties
panair-liberalized-abutments-properties-class [Class]

This class is used as a subobject of basic-panair-class and provides information for the
EAT data block of the PANAIR input file. The property liberalized-abutments? is used
to indicate whether this data block should be written to the file or not.

Inherit-from:

(panair-properties-class)

Properties:
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liberalized-abutments?
epsgeo

igeoin

igeout

nwxref

triint

iabsum

Methods:

write-panair-properties

When this property has a value of ¢, the EAT data block will be written
to the PANAIR input file. The default value is #il.

The EPSGEO parameter in the PANAIR input file. The default value is
0.1.

The IGEOIN parameter in the PANAIR input file. The default value of
nil will create a blank entry in the file.

The IGEOUT parameter in the PANAIR input file. The default value
of nil will create a blank entry in the file.

The NWXREF parameter in the PANAIR input file. The default value
of nil will create a blank entry in the file.

The TRIINT parameter in the PANAIR input file. The default value of
nil will create a blank entry in the file.

The IABSUM parameter in the PANAIR input file. The default value
is 0.0.

panair-networks-class

[Class]

This class is used as a subobject of basic-panair-class and provides information for the
POINTS data blocks of the PANAIR input file.

The network-list property should contain a list of references to instances of class panair-
network-class. By default, the formula for this property will find all instances of panair-
network-class that are in the branch of the model tree headed by panair-networks-class.
Any networks that are added beneath this object will automatically be added to the list.
Alternately, networks may be placed anywhere in the tree and the formula for network-Iist
may be changed appropriately.

Inherit-from:

(panair-properties-class)

Properties:
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network-list This property should contain a list of references to instances of panair-
network-class which represent the actual networks to be used in the
analysis. The default formula will find all instances of panair-
network-class which are under the panair-networks-class. If this
default behavior is acceptable, the formula for this property should

not be changed.

network-lookup-table This property contains a list associating instances of panair-network-
class and their network ids. This property should not be changed
by the user.

network-ids This property contains a list of network ids corresponding to the objects

in network-list. The individual network objects will get their ids
from this property (through the method get-network-id). By
default, this property will contain a list of consecutive integers
beginning with 1. This property should not normally be changed
by the user.

Methods:
write-panair-properties

get-network-id

panair-network-class [Class]

This class is used to represent one network in the PANAIR analysis. Information in this
object will be used to create a POINTS data block in the PANAIR input file.

Typically, instances of this class will be children of an instance of panair-networks-class
but they may appear anywhere in the model tree. If they do not appear beneath the
panair-networks-class instance, then the network-list of the panair-networks-class
instance will need to be changed to reflect this.

The source-object property should point to an instance of an object from which mesh
geometry can be found.

Inherit-from:

(web-surface-from-points-object panair-properties-class)
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Properties:

source-object

networks-object

network-id

run-dir

netname
cpnorm

dnsmsh

betl

betl-t

This property should point to an instance of an object which can
provide network mesh information. The default value is #il.

This property should point to an instance of panair-networks-class. By
default, it will look up in the tree from the panair-network-class to
find an instance of panair-networks-class.

This property contains the id for this network. By default, this will be
found by calling the method get-network-id on the instance of
panair-networks-class referenced in networks-object. This should
normally not be changed by the user.

The directory in which files should be written. By default, this property
will get its value from a property with the same name in and
instance above it in the tree.

By default, this will be a string version of the network-id. This name is
written as NETNAME to the PANAIR input file.

Describes the mesh surface normals and corresponds to the CPNORM
parameter in the PANAIR input file. The default value is 2.0.

Determines whether panel mesh density will be modified from that
given by nm and nn and corresponds to the DNSMSH parameter in
the PANAIR input file. When dnsmsh is 1.0, the parameters dn
and dm will be written to the input file. When dsnmsh is 0.0, they
will not. The default value is 0.0.

Density factor which changes the number of columns in the mesh
corresponding to the DN parameter in the PANAIR input file. This
parameter will only be written to the file when dnsmsh is 1.0. The
default value is 1.0.

Density factor which changes the number of rows in the mesh
corresponding to the DN parameter in the PANAIR input file. This
parameter will only be written to the file when dnsmsh is 1.0. The
default value is 1.0.

Two-dimensional mass flux for each solution corresponding to BETL in
the PANAIR input file. The value of this property should be a list
of values corresponding to the cases in the panair-onset-flow-
conditions-property-class. This property will be used to create the
INFLOW data block in the input file and is only written when k¢ is
either 9, 4, or 14.

Twice the surface thickness slope for each solution corresponding to
BETL in the PANAIR input file. The value of this property should
be a list of values corresponding to the cases in the panair-onset-

Sflow-conditions-property-class. This property will be used to
create the SIMULATED THICKENSS data block in the input file
and is only written when 47 is either 2 or 12 and when tw is 1.0.

The number of networks in the group represented by this object
corresponding to the KN parameter in the PANAIR input file. The
default value is 1.0 and should not be changed by the user.

The number of rows in the network corresponding to the NM parameter
in the PANAIR input file. The value of this property is determined
automatically based on the value of points-list and should not be
changed by the user.

The number of columns in the network corresponding to the NN
parameter in the PANAIR input file. The value of this property is
determined automatically based on the value of points-list and
should not be changed by the user.
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n-panels The total number of panels in the network. This is computed
automatically based on nm and nn and should not be changed by

the user.

kt Defines the boundary condition type for the mesh and corresponds to
the KT parameter in the PANAIR input file. The default value is
1.0.

tkw Corresponds to the TKW parameter in the PANAIR input file. The

default value of nil will leave this blank in the file.

resultant-number-of-panels  The total number of panels in the network including the effects of
the density properties dn and dm. This is computed automatically
and should not be changed by the user.

points-list A list of lists of points specifying the mesh for this network. When
source-object is given, these points will be determined from the
specified object and this property should not be changed by the
user. These points will be written as X Y Z data in the PANAIR
input file.

nodes-file This property is used to create the network geometry if required
(primarily for display purposes). It comes from the inheritance
from web-surface-from-points-object. The default formula will
create a file in the run-dir directory. It does not normally need to
be changed by the user.

con-file This property is used to create the network geometry if required

o (primarily for display purposes). It comes from the inheritance

from web-surface-from-points-object. The default formula will
create a file in the run-dir directory. It does not normally need to
be changed by the user.

use-files? This property is used to create the network geometry if required
(primarily for display purposes). It comes from the inheritance
from web-surface-from-points-object. It does not normally need to
be changed by the user.

cleanup? This property is used to create the network geometry if required
(primarily for display purposes). It comes from the inheritance
from web-surface-from-points-object. It does not normally need to
be changed by the user.

Methods:

generate-panair-network-mesh-points

write-panair-properties

panair-properties-class [Class]

This class provides a common superclass for all PANAIR classes to inherit from. It adds
no additional functionality.
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Inherit-from:

(object)

PANAIR Class with Common Aerodynamic Coefficients Interface

panair-class [Class]

This class combines the PANAIR analysis of basic-panair-class with the common
interface for accessing aerodynamic coefficients provided by aerodynamic-coefficients-
source-class. This will allow any other objects or applications which require the
aerodynamic coefficients results from PANAIR to access them in a standard way. These
can be accessed using the get-coefficients method and the key and coefficient symbols
listed below.

This class also implements interfaces to flight condition and body geometry objects. If
these objects are referenced, then many of the properties of panair-class will be computed
automatically. The panair-class will ignore the state of the angle-mode property of the
[flight-conditions-object and always uses the angles-of-attack and sideslip-angles from the
flight-conditions-object.

The aerodynamic coefficients are accessed using the keys ‘M, ‘alpha, and ‘beta
summarized in this table:

Key Symbol | Label Description Range in Property:

Mach number | 'M "™M" "Mach Number" | mach-numbers

angle of attack | 'alpha "alpha" | "Angle of | angles-of-attack
Attack"

sideslip angle | 'beta "beta" "Sideslip Angle" | sideslip-angles
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The aerodynamic coefficients available in panair-class are summarized in this table:

Coefficient PANAIR Output
Symbol Value

'CA fx

'CY fy

'CN fz

'CSL mx

'CSM s my

'‘CSN mz

Inherit-from:

(basic-panair-class aerodynamic-coefficients-source-class)

Properties:

flight-conditions-object  If this property contains a the-reference to an instance of flight-
conditions-class, then the values of mach-numbers, angles-of-
attack, and sideslip-angles will be taken from that object and do
not have to be set in this object. The default value of nil indicates
that the properties need to be set in this object.

body-geometry-interface-object  If this property contains a the-reference to an instance of body-
geometry-interface-class, then the values of body-length and max-
cross-section-area will be taken from that object and do not have
to be set in this object. The default value of nil indicates that the
properties need to be set in this object.

body-length The reference vehicle length. Ifa body-geometry-interface-object is
specified, then the value of this property will be taken from the
body-length property of that object. Otherwise, it must be set here.
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max-Cross-section-area

mach-numbers

angles-of-attack

sideslip-angles

ac-key-symbols
ac-key-labels
ac-key-descriptions

ac-key-ranges

ac-coefficient-symbols

The reference vehicle area. If a body-geometry-interface-object is
specified, then the value of this property will be taken from the
body-max-cs-area of that object. Otherwise, it must be set here.

A list of values to be used as the Mach number input for a PANAIR
run. If a flight-conditions-object is specified, then the value of this
property will be taken from the mach-numbers property of this
object. Otherwise, it must be set here.

A list of values to be used as the angle of attack input for a PANAIR
run. If a flight-conditions-object is specified, then the value of this
property will be taken from the angles-of-attack property of this
object. Otherwise, it must be set here.

A list of values to be used as the sideslip angle input for a PANAIR run.
If a flight-conditions-object is specified, then the value of this
property will be taken from the sideslip-angles property of this
object. Otherwise, it must be set here.

A list of the keys used to access the aerodynamic coefficients in the
panair-class. This should net be changed by the user.

A list of the labels of the keys in panair-class. This should not be
changed by the user.

A list of the descriptions of the keys in panair-class. This should not
be changed by the user.

A list of the key ranges in panair-class. This is based on the mach-
numbers, angles-of-attack, and sideslip-angles properties and
should not be changed by the user.

A list of the coefficient symbols in panair-class. This should not be
changed by the user.
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Appendix 5: AML Dracon Interface Documentation

generate-drakon-materials-file [Function]

This function generates the materials file needed for the Dracon analysis.

Format:

(generate-drakon-materials-file file-name &key drakon-path)

Arguments:

file-name

String specifying the materials file name

drakon-path  String specifying the path to the drakon directory. Default is (logical-path

:drakon-binaries)

convert-aml-mesh-ascii-files-to-drakon-binary [Function]

This function converts the AML mesh ASCII files to drakon binary format for the Dracon

analysis.

Format:

(convert-aml-mesh-ascii-ﬁ]es—to-drakon-binary

Arguments:
crd-file
n-nodes
con-file

n-elements

crd-file n-nodes con-file n-elements directory element-type

&key drakon-path)

String specifying the node coordinates file name
Number of nodes in mesh
String specifying the node connectivity file name

Number of elements in mesh
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directory String specifying the directory path
element-type String or symbol specifying Drakon element type

drakon-path  String specifying the path to the drakon directory. Default is (logical-path
:drakon-binaries)

convert-aml-loads-ascii-file-to-drakon-binary [Function]

This function converts the AML loads ASCII files to drakon binary format for the Dracon
analysis.

Format:
(convert-aml-loads-ascii-file-to-drakon-binary
loads-file directory
&key drakon-path
)
Arguments:
loads-file String specifying the loads file name
directory String specifying the directory path

drakon-path  String specifying the path to the drakon directory. Default is (logical-path
:drakon-binaries)

convert-aml-fixed-nodes-ascii-file-to-drakon-binary [Function]

This function converts the AML constraints ASCI files to drakon binary format for the
Dracon analysis.

Format;

(convert-aml-fixed-nodes-ascii-file-to-drakon-binary
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fixed-nodes-file directory

&key drakon-path

)
Arguments:
fixed-nodes-file String specifying the fixed nodes file name
directory String specifying the directory path
drakon-path String specifying the path to the drakon directory. Default is
(logical-path :drakon-binaries)
convert-aml-zero-thickness-elements-ascii-ﬁle-to-drakon-binary [Function]

This function converts the AML zero thickness ASCII files to drakon binary format for
the Dracon analysis.

Format:
(convert~am1—zero-thickness—elements-ascii—ﬁle-to—drakon—binary
zero-thickness-elements-file directory
&key drakon-path
)
Arguments:
zero-thickness-elements-file String specifying the zero thickness elements file name
directory String specifying the directory path

drakon-path String specifying the path to the drakon directory. Default
is (logical-path :drakon-binaries)
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run-drakon [Function]

This function runs for the Dracon analysis.
Format:
(run-drakon

analysis-type directory num-iterations load-cases

&key drakon-path
)
Arguments:
analysis-type Options are :analysis or :optimization to either run the Drakon

structural analysis or the Drakon Optimization

directory String specifying the directory path

num-iterations Number of iterations for to run in the optimization

load-cases List of load values

drakon-path String specifying the path to the drakon directory. Default is

(logical-path :drakon-binaries)

convert-drakon-binary-result-files-to-aml-ascii [Function]

This function converts the Drakon binary results files to ASCII files for analysis.
Format:
(convert-drakon-binary-result-files-to-aml-ascii

directory aml-displ-prefix aml-stress-prefix

&key drakon-path n-load-cases
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)

Arguments:

directory String specifying the directory path

aml-displ-prefix Prefix of the displacement result in string format.

aml-stress-prefix Prefix of the stress result in string format.

drakon-path String specifying the path to the drakon directory. Default is
(logical-path :drakon-binaries)

n-load-cases Number of load cases in the file. Defaults to 1.

drakon-interface-class

[Class]

This class provides the necessary objects and properties to interface AML with the
Drakon stress and optimization analysis.

Inherit-from: name-generator
Properties:

mesh-query

fixed-nodes-query

zero-thickness-elements-query

loads-query

directory

analysis-type

Mesh query instance for the structure being
analyzed. Defaults to (default nil)

Mesh query instance of the constrained nodes.
Defaults to (default nil)

Mesh query instance of the nodes that have zero
thickness such as holes or cutouts. Defaults to
(default nil)

Mesh query instance of the loaded nodes. Defaults
to (default nil)

String specifying the directory path where the
analysis files are located. Defaults to (default nil)

Options are :analysis or :optimization to either run
the Drakon structural analysis or the Drakon
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n-iterations

load-cases

element-type

drakon-binaries-path

generate-materials-file?

convert-mesh?

convert-loads?

convert-fixed-nodes?

convert-zero-thickness-elements?

run-drakon?

convert-results?

displacement-output-file

Optimization analysis Defaults to (default nil)

Number of iterations for to run in the optimization
Defaults to (default 1)

Number of load cases in the analysis. Defaults to
(default 1)

Element type used in the analysis. 3 represents a
three sided element, 5 represents a membrane-quad
element, and 6 represents a sandwich element.
Defaults to (default 5)

String specifying the directory path to the Drakon
binaries. Defaults to (logical-path :drakon-
binaries)

Demanding this property will generate the materials
file called mater.dat in the directory specified by the

directory property

Demanding this property will convert the mesh files
from AML format to Drakon binary format

Demanding this property will convert the load files
from AML format to Drakon binary format

Demanding this property will convert the constraint
files from AML format to Drakon binary format

Demanding this property will convert the zero-
thickness files from AML format to Drakon binary
format

Demanding this property will (if needed) convert
the mesh, generate the materials file, convert the
loads, convert the fixed nodes, convert the zero
thickness elements, run the specified analysis
depending on the analysis-type property

Demanding this property will run Drakon if
necessary and convert the output files to AML
format ASCII files

File containing the displacement results. Defaults
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to (nth 0 (nth 0 “convert-results?))

stress-output-file File containing the stress results. Defaults to (nth 0
(nth 1 “convert-results?))

Subobjects:

drakon-results-tables An instance of mesh-with-color-mapping-tables-
class, this object collects the data and results from
the Drakon analysis and is used in the displacements
and stress visualizations.

displacements A series of mesh-with-color-mapping-class objects
showing the displacements from the Drakon
analysis

equivalent-stress An instance of mesh-with-color-mapping-class
showing the equivalent stress output from the
Drakon analysis

Icf-equivalent-stress An instance of mesh-with-color-mapping-class
showing the Icf equivalent stress output from the
Drakon analysis

lef-equivalent-stress-1 An instance of mesh-with-color-mapping-class
showing the Icf equivalent stress 1 output from the
Drakon analysis

Icf-equivalent-stress-2 An instance of mesh-with-color-mapping-class
showing the lcf equivalent stress 2 output from the
Drakon analysis

thickness An instance of mesh-with-color-mapping-class
showing the thickness distribution output from the
Drakon analysis

stress-vectors An instance of mesh-with-color-mapping-class
showing the vector plot of the stress output from the
Drakon analysis

Drakon Interface Examples [Class]

These classes are provided as an example to demonstrate the AML/Drakon interface. The
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data files can be found electronically in the AML/Drakon interface system.

(define-class drakon-sandwhich-test
:inherit-from (drakon-interface-class)

:properties (
directory "c:\\temp\\drakon-sandwich\\”
aml-crd-file {(logical-path “directory "model.crd")
aml-con-file (logical-path “directory "model.con")
aml-loads-file (logical-path ~directory "model.loads")

aml-fixed-nodes~-file (logical-path "“directory "model.displ")

element-type (default 6)
)
)

(define-class drakon-quadmesh-test
:inherit-from (drakon-interface-class)

:properties (
directory "c:\\temp\\drakon-quad\\”
aml-crd-file (logical-path "“directory "model.crd")
aml-con-file (logical-path "“directory "model.con")
aml-loads-file (logical-path "“directory "model.loads")
aml-fixed-nodes-file (logical-path ~directory "model.displ")
element-type (default 5)

)
)
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Appendix 6:
General description of the sandwich plate element used in AML

Alexander Danilin — Samara State Aerospace University
Terrence A. Weisshaar — Purdue University

The sandwich panel element used by AML
is shown in Figure 1. This element is a
special sandwich plate developed at
Samara State  Aerospace University,
Samara, Russia, especially for structural
design optimization; its development will
be summarized here so that a user can
understand the assumptions used to create
the element. This element consists of two
isotropic membrane skins with a
continuous filler or core between them.
This element resists bending, twist and
shear loads.

The projection of the element to the x-z plane has the shape of an arbitrary quadrilateral.
The lines connecting the top and bottom surfaces of the sandwich are

axis shown in Figure 1.

The filler core is relatively rigid in the transverse (y) direction so that normal strains in
the y-direction are very small. The assumption about filler core incompressibility in the
transverse direction simplifies the development of the element stiffness matrix and
reduces the number of degrees of freedom. The core is shear deformable and distorts as it
resists shear stress and transmits these loads between the top and bottom skins. This
shear deformation behavior may be 1sotropic or orthotropic. The stiffness of this filler

core is expressed as a matrix

(1
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Gy, and Gyx are the shear moduli of the filler core in the y-z plane and x-y plane,
respectively.

The nodes of the filler element portion are placed at the middle of core element edges on
the y-axis, as indicated in Figure 1. Each node has five degrees of freedom: three
displacements (u, w, v) and two angles (¢ and y). The element skin thicknesses are &y
and &y, the modulus of elasticity is E and the Poisson's ratio of the skin material is u. For
each node the coordinates X, y, z and element height 2h are known.

The skin itself can have curvature. For this reason, each skin panel is divided into four
triangles, as shown in Figure 2. In the element derivation the panel stiffness matrix has a
contribution from the skin that is accounted for by summing the individual stiffness
matrices of the triangles. The coordinates of outside nodes determine the coordinates of
the interior node. The selection of this skin model is made for the several reasons.

First of all, the triangle is the simplest membrane element for modeling an isotropic skin,

therefore creation of a stiffness matrix
and subsequent programming are greatly
simplified.

The introduction of an interior node and
definition of its position is accomplished
using a least squares method; this allows
careful approximation of the median
surface of the skin using the four
triangles.

Figure 2

Stiffness matrix of skin panels

To illustrate the features of the element development, let's consider the upper skin panel
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shown in Figure 2. Its coordinates on the y-axis are given by

Hi=y,+(h;+0.56,) i=1234, (2)

Coordinates of the interior point 5 are calculated
from a least squares method using coordinates of 3
the other four nodes of the upper skin element.
To solve for the x-axis coordinate it is necessary

4
to minimize a function f(x5)=2(|x5 —xi])z :
i=1

Equating to zero the derivative of f( x5 ) with 4 |
respect to xs and solving this equation, we find
1
1 Figure 3
X5 = ——z X;. (3)
435

The coordinates zs and Hs are similarly calculated.

To understand the development of the upper skin stiffness matrix, consider a triangle 125
in Figure 2. Enter a local coordinate system in the plane of a triangle with the beginning
at the point 1. An axis h is placed through link 1-2, and an axis x is placed perpendicular
to h. The length of segment 1-2 is then

d =\/x§,+z§1+H2‘7,, 4 i

Where x21 =X - X1; 221 = 7, - zy; etc.
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For the definition of direction cosines of an axis x from point 5 we drop a perpendicular
to the axis h. The length of segment 1-6 is

dis=112xs5;1 + my; Hs; +nypzsg, 6)

and the length of a segment 6-5 is

dgs =\/x§1 +H521 +Z§1 ‘d126- (7

Direction cosines of the axis x are

Local nodal coordinates of the triangle are written as

X=2(X-X,)
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where

/?:F/ ) 53}_ Z:[lw Mgs ’765J

m 1 n; L, my, 1y

X X X XX X
X=H, H, H |, X, =|H, H, H,|

Z; Zy zZ; z; oz oz

The displacements inside the triangle are written as
Uu=a,+a,+a,n, w=by+b<+byy  (10)

In a matrix form these are written as

where {a}z “ ; [d]=[1 g

Using boundary conditions, we compute the displacements of the vertices of the triangle
to be
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U=D-{a} (12)
where
(7, 1 & n, 0 0 0]
W, 00 0 I ¢& 7
— |u 1 0 0 0
U::<il_2 . D= & 1 .
W, 00 0 I & m
78 1 & ns 00 0
Vs 0 0 0 1 & 75|

Solving the matrix equation (12) and substituting this expression into Eqn. (11), we find
i L
S(=[a]lp]'U. a3)

Strains in the triangular panel are then found to be

ou
& o2
E=9&; =19 an (14)
n
Yen ow ou
_+._.
|0 On|
or
e=b-U (15)
where
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752 0 — s 0 7 0
0 =&, 0 S5 0 =& (16)
=& s, Ss; M5 — Esi My

1
24,5

b=

and 24,55 =&55my, =&3Ms; (17)

Translational displacements in the plane of a triangle are calculated as
U=1U (18)

where

fooa-
wour we vy ousows wf, s

<

I

\5

=
S O N
S D
O D

Translations {g w \_I}T are computed using translations {u wop W v}T

Uu=su—@h'; w=w-oh'; v=v (19)

1<

where h'=h+0.56, (20)

Nodal displacements are
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<

U=II 1)

~ T,
where U={u, w, o, v, v, u; w, 9, ¥, vy us ws 9 vs Vst

n, 0 0 1 0 -h 0 0
M={0 I, 0 M=\0 1 0 -k 0| i=125
0 0 I, 00 0 0 I

The displacements of the interior node are calculated as the mean arithmetical
displacements of the four nodes

U=B-U (22)

where

U={u, w0 v, v uz w, 0, W, v, uy wy @3 vy Vi Uy W, @, Wy v

Doing this for other triangles produces a
banded B matrix like that shown in Figure 4.

oy
t

Substituting Eqn. (13) into Eqn. (15) and
solving Eqns. (21) and (22), we calculate
strains and stress in the triangle 125 as

Figure 4 — Banded B matrix
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e=L-U, (23)

o={ ¢ 0y Opyf=k-L-U, (24)
I u 0
where L =bAIlB, K‘=1 E Siu 1 0 | (25
—.ﬂ .
0 Ll
2

The stiffness matrix contribution for an element is obtained by integration of the

expression L'« L over the element volume. For the triangular panel 125 the stiffness
matrix is written as

K=L'xL|4,5|5, (26)

The stiffness matrix of the upper skin panel is obtained by summation. The stiffness
matrices of the four triangles are computed, using equations similar to Eqns. (4) - (26),
and then summed.

The stiffness matrix of the lower panel is computed by the same formulas. To do this it is
necessary to change the sign before brackets in Eqgn. (2) and before h; in Eqn. (19) and to
substitute 8, instead of &, in Eqn. (2) and Eqn. (20).

Skin panel stresses

We calculate panel stresses by first substituting the coordinates of panel nodes
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Y=cfrcc? )'cy @7)
h=CcTccct)'cn (28)

}7_= 51?2?35’_4}
h

Y=
— are the coordinates of the plane panel and {y 1Y2Y3Y4 } are
=iy} e

{h1h2h3h4}
1 1 1 1

coordinates of the curved panel, and C=|x;, x, x; x,|

The stresses in each triangle are defined by Eqn. (24). Thus in the formulas for an
evaluation of the matrices B also it is necessary to substitute coordinates obtained from
Eqns. (27) and (23). The stresses in the panel are easily calculated by simply averaging of
stresses in the triangles.

Stiffness matrix of filler core

The linear relationship between filler core vertical displacements and nodal displacements
is

v=cptcex+cz (29)

Shear strains occur because of rotation of rigid vertical lines in the core. We shall
calculate as mean arithmetical rotation angles the following

13 v 13 v
y={7yxyyz}={—zz¢,-+g;—;Zwé;} (30)

i=] i=]
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13 13
or y = c,——ZZ@-; CZ“ZZ‘/’I' (31)
i=/ i=/

Vertical displacement of element nodes are

V= {v1v2v3v4}= C'n (32)

where n={c,c 1€}

From Eqn. (32), using a least squares method, we find
n=RV (33)

where R=(cct)'c.

Then strains and stresses in the core are

y=LU  (35)

rz{r T }=G_y (36)

yxyz

(34)
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where L, =mRA+T (37)

0 1 0
and m=
{0 0 1 :l

The stiffness matrix of the core is
=

where the volume of the core is

] 4
V= 4 1234 Z 2h; (39)
=1

= )
and A= 5 X32Z3; —x21232l+|x34z3, —x3,z34|

(40)

is the square of a projection of the element on the plane. The stiffness matrix of all
elements is found by summing the stiffness matrices from both the top and bottom skin

panels and the stiffness matrix of the core filler.
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Appendix 7:
AML Dracon Interface Documentation The Use of Optimality Criteria for Aircraft
Conceptual Level Structural Design

Alexander |. Danilin
Terrence A. Weisshaar'

Abstract

This paper illustrates the use of established optimality
criteria with deflection constraints to add information
during the early design stage to aid in a multi-
disciplinary, as opposed to a structural design, effort.
Our objectives are three: to estimate weight of unusual
design components accurately; to provide stiffness
information when aeroelastic or other stiffness
constraints are involved; and, to provide a seamless
path from conceptual to preliminary design where
accurate, gradient-based optimization methods can be
applied. This approach requires a simple, but accurate,
method to address static aeroelastic constraints such as
lifting surface effectiveness. We address aeroelastic
constraints by furnishing a rationale for locating typical
sections on lifting surfaces (such as was first done in an
ad hoc manner by Theodorsen). Our examples indicate
that control of sectional deformation of parts of lifting
surfaces lying between 70% and 90% of the semi-span
will serve as a surrogate for precise aeroelastic control.
We also discuss how to identify structural locations
where we are likely to find minimum gage thicknesses.
Our approach is illustrated with two problems: design of
a vertical tail with and without a lift effectiveness
constraint; and, design of a supersonic transport wing to
reduce trim drag.

Background

The purposes of this paper include: a historical
perspective on structural design efforts that

have occurred in Russia during the past
decade; and, suggesting how to improve
structural conceptual design by reducing risk,
adding fidelity and encouraging creativity.
This improvement includes the routine use of
formal optimization methods for structural
conceptual design at the earliest possible time.
Our process depends on using optimality
criteria for structural design; this area is a

reasonably well-developed analytical
technology. Schmidt[1] gives a
comprehensive list of early papers in

optimality criteria that is sufficient for our
purposes.

Most optimality criteria focus on fully stressed
design. All optimality algorithms for solution
use recursive redesign rules. One limitation of
fully stressed design is that it assumes that a
fully stressed design is equivalent to a
minimum weight design. This is not a
universal rule and counter examples abound.
We do not wish to revisit these arguments,
except to say that the particular redesign
algorithm used here is based on designing
short load paths into the structure[2]. The

- . . -
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particular strength of our method is that it uses
a finite element mesh that, if fine enough, can
be used later for preliminary design, in which
general mathematical programming
approaches can be exercised on appropriate
models. When this is done, we have a
relatively  seamless boundary between
primitive conceptual and preliminary design
models.

In a design activity there are always two tasks,
analysis and synthesis. Our effort is intended
to bring these two areas closer together. We
have found that if we do not contrast the
difference between analysis and synthesis at
the outset, then some of our points will be lost.
In our context, analysis is “the activity
directed toward the installation of links
between parameters and characteristics of an
object that has already been designed.” The
definition of the maximum stress in a wing
after all of its geometrical parameters have
been selected is one such example. We note
that such a task can be solved both by a
mathematical simulation and by a full-scale
experiment, so our definition of analysis also
extends to testing activities.

task of synthesis becomes the prerogative of
the creative abilities of human intellect and
experience. This does not mean that humans
always make good decisions or that they
cannot be helped by analysis.

In the United States there are several
approaches to weight minimization with
aeroelastic constraints. Certainly the most
recognized and venerable of these codes are
TSO [cf. Ref. 3] and FASTOP [cf. Ref. 4],
codes that date from the 1970°’s. FASTOP
most resembles the approach wused here
although it is more accurate, but requires more
design definition to operate and thus allows
less latitude for design efforts. More recently,
ASTROS[5] has become a standard for
advanced design optimization with aeroelastic
constraints.

Still, at the beginning of the design process,
particularly those that focus on new concepts,
focus is seldom sharp. Our concept addresses
this lack of clarity and premium on
understanding of new concepts. Figure 1
shows an example of how analysis and

On the other hand, synthesis is
“the activity directed toward
the choice of a structural form

Incomplete integration
and. such parameters .fo_r Fhe T - Py AR
designed object that minimize Detaied swess amayes L abriarsie

. . --3- Aerody namic analy s& H arge group of componen
(or maximize) one or more of Oravings of I
- . . - Some wasted work because of
its characteristics and satisfy T Cimemin cogme
all restrictions.” For example, ERRORS | —Y—— | T

. INTRODUCE GManuLafm{ing Detailed design
the choice of the number and and LATER Groundtes

DISCOVERE

arrangement of spars and ribs
and the materials to use to
make these elements is a
product of structural synthesis.
In the majority of cases the

External shape definition
Internat arrangement d Ly
pay loa

Conceptual design

Design specialists with broad
experience
Decisions based on past
experience and intuition

Choice of materiak
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Figure 1 — The typical aircraft design process
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synthesis are organized for a design activity.
There is a need to reorganize this process to
take advantage of advances in computation
and organizational dynamics[6]. For one thing,
the level of structural analysis used in
conceptual design is usually low.

If the organization always builds the same
time of airplane for the same purpose, our
approach will not be very useful. If the
choices are few the team needs analysis, not
synthesis. We believe that the secret of
successful creative, concurrent design is the
blending of analysts and designers, but we
defer this extended discussion to others[7].

Many articles have been written about the
design process and the move towards
concurrent design[8]. We will not review
these articles here, except to say that it is a
challenge to include the structural design to
the same extent as aerodynamic design that
can define outer mold-lines with exquisite
accuracy. This aerodynamic
synthesis/analysis has been fueled by
analytical capabilities in aerodynamic paneling
codes and CFD. Structural analysis can also
support design, but it is bereft of definitions
required to generate models until it is
sometimes too late to make creative
contributions.

Structural design is loads driven. The
thousands of loads that define the myriad of
skeletal dimensions such as panel thicknesses
cannot be defined until well into the design
process. As a result, the chance of using
creative concepts diminishes as other
members of the design team add features.
This is particularly true in the case of concepts

that rely on exploitation of aeroelastic design
features. These aeroelastic tailoring concepts
are stiffness dependent and the decision, early
in the design process; to place a main spar at a
specific point, in a certain direction may also
ensure that a concept, such as an active
aeroelastic wing, will not have a strong
benefit.

During conceptual, structures related design,
discussions about weight are serious. For
instance, the advocacy of a new concept on the
basis of reduced cost or weight is often on
“thin ice” and sometimes relies more on hope
than hard numbers or on the “experience” or
“feelings” of the advocate; these feeling are
often not shared by others. We believe that
our approach helps to provide hard evidence
that can be generated before, not after, the
structural layout is locked into the process.
Among our limited objectives is the use of
simple optimality criteria and “typical”
sections to resolve aeroelastic issues as early
as possible.

Identification of aeroelastic characteristic

(typical) sections

Some aeroelastic stiffness requirements such
as lift effectiveness can be posed
approximately as a limitation on deformation
(note that this “limitation” can also be a
“requirement” for flexibility). To use
optimality criteria, these constraints enter as
inequalities and, in the case of wings, the
measure of design stiffness is taken as an
elastic displacement at a finite number of
selected, “characteristic” or “typical” cross-
sections.
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The deformations of these wing cross-sections
and their aerodynamic properties are
representative of the elastic twist angle 6(z)
and the chordwise change of curvature
(camber) of the structure Af(z) along the
wing; the coordinate z is the nondimensional
distance from the lifting surface root. From
design experience it is known that ¢ and Af
contribute approximately the same effects
when

2Af =6 €))

For large-aspect-ratio wings with sections having
thickness-to-chord ratios between 10% and 12%, the
change in camber curvature is insignificant compared to
the elastic twist, and the condition given in Eqn. 1 is not
found at any spanwise cross-section.
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Figure 2 - Chordwise curvature
and twist for an example low
aspect ratio transport wing;
subsonic and supersonic flight

For low-aspect-ratio, high-speed wings with
thickness-to-chord ratios between 3% and 5%,
relatively large chordwise deformation occurs

so that is possible to have a ratio like that
shown in Eqn. 1 on some sections. In Figure 2
the curves 6(z) and Af(z) for a supersonic
passenger airplane wing with an ogival
planform with thickness ratio 5% are shown.
It is seen that elastic twist dominates the
airloads at z > 0.5.

Tupolev 154 wing example

o

I

Fuselage
side

oo iam

Fuselage
Inboard flap

centerline

Qutboard aileron

Figure 3 — Tu-154 structural finite

element model

Theodorsen described these circumstances
when he considered torsional deformations of
a characteristic section at the % spanwise
position to be “characteristic” of the behavior
of the wing in general. He did not, to our
knowledge, publish the guidelines used to
select his typical section. Other researchers
recommend a characteristic cross-section
located at different Z locations.  Most
recommend selecting a characteristic cross-
section in the range z =0.7 to 0.9.

References, which substantiate the principles used to
select a characteristic cross-section, are not known to
us. Therefore we conducted a study to identify how to
select such a section.

First we consider the high-aspect wing shown in Figure
3. This wing has an aerodynamic aspect ratio AR= 7.5;
only the load-carrying part of a design is shown. The
structural  distribution and the  geometrical
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characteristics of model correspond to the wing of the
Tupelov 154 aircraft. Let's determine the torsional
deformations of cross-sections for three loading
conditions:

1. loading by tip section ailerons
2. loading by an inboard flap

3. acase with a forward center of pressure
Because the relative twist, not the absolute value of the

twist, is important, we will examine two different
normalized relationships:

5 () 02

9[(4)_m )

7,(:)- 22 )
0[9 (z)dz

Figure 4 plots these two relationships. It is
difficult to draw practical conclusions from a
plot of 6,(%), but the curves &,(z) show an
interesting feature. These three curves
intersect very close to each other at 7 = (.75.
We notice that for all three loading conditions
we have

6(0.75)

[6(z)dz

6,(0.75)= )

Z= const.

From this result it follows that the twist at z
=(.75 is
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Figure 5 — Structural finite
element model — note coarse
mesh

6(0.75) = const [0.(z) dz. (%)

L

This cross-section location is in the range
first mentioned by Theodorsen as his selection
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gure 4. Twist deflection results for:
o ~ flap loading;

A - forward center of pressure;
O - aileron loading.
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for the characteristic section.

Let's try this approach for the low aspect ratio
transport wing whose coarse finite element
structural model is shown in Figure 5. The
five loads applied to the wing are: a subsonic
cruise condition; take-off; aileron loading on
element IV; a twisting moment; and, aileron
loading on section II. The results shown in
Figure 6 demonstrate that here too it is
possible to find a characteristic section, in this
case at z = 0.83.

As a result of this study, propose the following
simple technique to find the typical section for
optimization studies. The twist distribution on
a “typical” wing is computed for several
loading conditions. The curves 8, (z), defined

in Eqn. 3, are constructed and the approximate
point of their intersection determines the
position of the characteristic section. This
gives us an empirical guide for optimization
studies.

Stiffness constraints and optimality criteria

To enforce an approximate aeroelastic constraint we
need a method for constraining displacements,
particularly those related to surface rotation. Consider
the search for a structural design with minimal volume
(mass) with a generalized displacement constraint at a
single point on the structure. To develop our constraint
relationship, we first apply a unit generalized force
(unit load) in the direction of the constrained
displacement (either a displacement or a rotation such
as twist). We use the Maxwell-Mohr formulas to
calculate the constrained displacement, called A, .

This is also referred to as the unit load or dummy load
method formula. We first assume that the design is
divided into m finite elements, each in a plane stress
condition, so that

A=y f%dsi,

i=l g %

[R:] = {Exi(in - !‘iRyi) + Eyi(Ryi - R +2(0+ Aui)ﬁxyiny[]

©)

Here R,=35,5, represent internal forces in
element i due to the unit loading; R, =05,
represents internal forces in element i due to
the applied loading; §; is the thickness of the
element; S, is the planar area of the
element;E;, and x are the modulus of
elasticity and Poisson's ratio of the element

material.

The internal loads due to the unit generalized
force and applied loading are called R, and
R;; they are determined by the usual finite
element procedure. If finite elements with a
constant stress field are used, Eqn. 6 becomes:

[R'1S;
E. 0.

171

3 ™

Equation 7 can be interpreted for rod
elements; S;1s the length of the rod; 5, is the

cross-sectional area; and, [R;] is the product

of internal forces of the basic and unit loading
cases.
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Figure 6 — Torsional deformation
distribution for low aspect ratio
supersonic transport wing

For thin-walled structures whose elements are in a plane
stress condition, the volume of material is written as

nt

V=356, (8)
i=1

We minimize this volume under the condition
that

a=a, ©

m
and ¥ =3%S5=min

i=l

(10)

where A, is the given value of the generalized
displacement.

The elements of the series in Eqn. 7 provide
the contribution of each element to the
displacement, which is constrained. If the
value [R]] is large, the displacement is largely
determined by deformations of the itk element.
If the size [R]] is negative then reducing the
material size or modulus will reduce the
deflection. Because the unit generalized force
is in the direction of the constrained
deformations, a negative value of the Mohr
integral shows where it is necessary to reduce
the volume of an element.

For an illustration of this method, consider a cantilever
beam loaded with two forces, as shown in Figure 7.
The tip bending displacement angle € in Figure 6 is to
be constrained to be zero. First apply a unit bending

moment M =1 to the end of the beam in the +4
direction and find the Mohr integral, defined in this
case as

(11)

Assume for simplicity that El=constant. By
multiplying the distribution of the moments
from the applied and unit load cases we find
the distribution of Mohr integrals over the
length of the beam shown in Figure 8.




From the distributions in Figure 8 it is seen  Then

that the reduction in bending stiffness between

points 2 and 3 will cause an increase in the PLI3
angle 9, while the reduction of stiffness in site
1 will result in a reduction of ¢. The angle ¢
of the tip section can be reduced by stiffening
or strengthening zone 2-3, or destiffening zone
1, or taking these actions simultaneously.

Negative values of the Mohr integrals always identify
design zones that are can be “weakened” to satisfy P2 9E
displacement constraints. From Eqn. 7 we see that in
these regions it is advisable to choose the minimum . .
thickness allowed for strength, construction or other Figure 8 — I_ntemal loading and
technological reasons. In Eqn. 7 we collect all terms Mohr integral values
bearing a negative term so that the equation is written as

A=A -A (15)

SRS RSy 12
A"; E; &, | E; 5 | (12)

i=n+]|

The condition in Eqn. 9 will look like

Here 5, is the minimum allowable thickness of

elements with negative contributions to the
Mohr integrals; &, is the thickness of elements

for which the Mohr integrals are positive; n is

the number of elements where the Mohr

integrals are positive. If, in zones with negative Mohr integrals, the minimally
allowable thicknesses are used, the thickness of these

elements are eliminated as design variable and we find
optimum distribution of a material only in zones with

At =A,+A” (16)

1. We define two terms positive Mohr integrals. Thus, we have a task of
conditional optimization: to minimize the volume of
material

A =S LA ]~33 ’ (13)
=1 E; d; ~ - ~
7=)"5, & =min (17)

i=1

(14)

under the condition in Eqn. 16.
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2. LaGrange multipliers are used to find the solution.
Let's define a function

=Y 5540 -0,-8)  (18)

i=]

where 4, is the LaGrange multiplier. The
conditions of a minimum of the function are:

ilizl—l,-[ﬁl%zo,i=l,2,...n (19)
6; £ 67
L A —A -A =0 (20)
a,
From Eqns. 19 and 20 we have
5 = z,-[’i.] (21)
E;

Substituting Eqn. 21 into Eqn. 20 we find the
LaGrange multiplier

TN
=7

(o, +a)

(22)

1

Equation 21, accounting for Eqn. 22, can be
written as

The expression in Eqn. 23 defines the “law of
distribution” of a material for elements of the
design ensuring the constraint on the
generalized displacement with internal forces
R, and R;.

finite element model , , R

Fig. 10 — Vertical tail finite
element model. Spars are
indicated as A, b, B. This
model has 108 nodes, 157
elements and 321 degrees of
freedom.

Let's calculate the required volume of the
design from Eqn. 8 by substitution of §, from
Eqn. 23 and the minimally allowable thickness
J;.

i
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(24)

Figure 9 — Vertical tail example

Let's examine Eqns. 23 and 24. In the
presence of zones with negative Mohr
integrals, that i1s at A %0, we have an
opportunity to develop a design with a
constrained zero generalized displacement:
A,=0. Moreover, the satisfaction of the

requirement A, <0 is possible, provided that
|A,|<a™.  If the sites with negative Mohr

integrals are absent, we cannot reduce the
existing generalized displacement.

Example - vertical tail design with strength
and Stiffness constraints

Consider the task of designing of a vertical tail structure
with yaw loading, but with the constraint that it be lift
effective. The assumed distribution of this
aerodynamic loading is assumed to be uniform with an
intensity that depends on flight speed and yaw angle.
The tail is sweptback so that bending deformation
causes negative streamwise angle of attack and reduces
the effectiveness of the vertical tail to produce a
restoring moment when the tail is displaced sideways
(see Figure 9). Owur design problem includes a
requirement for strength and a constraint on stiffness so

that the tail remains effective. This latter constraint is
an aeroelastic constraint. The issue here is how we can
increase the effectiveness of the tail by structural
redesign and what it will cost or save in terms of
weight.

Our aeroelastic constraint, rather than directly
addressing aeroelastic effects all along the entire tail
surface, will instead require that there be a non-negative
angle of twist of a characteristic section located at
distance 87.5% of the distance from the root to the tail
tip. Thus, the stiffness constraint requires that twist of
vertical tail under its aerodynamic loading should be

Panel thickness

Spar cap cross- ;
sectional area
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/ Vi sl

Wing Root

Figure 12 - Final parameter values found from

optimization with strength and stiffness

constraints; parameter values with minimum

gage are not shown on the figure.

opposite to its “natural” deformation.

Our example has a 3-spar vertical tail structure
whose coarse geometrical finite element grid is shown
in a Fig. 10. Ribs are located along the streamwise
direction with uniform spacing; the thickness to chord
ratio of the structure is 16 %. Using a software package
DRACO (developed by the first author and used
extensively for structural design and design education in
Russia) the vertical tail structure was optimized.

The initial structural arrangement has uniform
distributions of material in elements within each of five
structural element groups. The initial skin element
thickness is 1 mm; spar web thicknesses are 2 mm; rib
webs and leading edge webs are 1 mm,; cross sectional
areas of rib caps are 100 mm?; spar caps are 1000 mm’.
The lower limits for the element cross-section areas and
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Figure 11 - Final values found from

optimization with a strength constraint only

thicknesses are equal to 0.1 % of the initial values. The
allowable stress is identical for all elements and equal to
100 N/mm’; the modulus of elasticity of the structural
material is 7.2 x10* N/mm?. The generalized
displacement constraint is A, =0. The streamwise

twist at the position 87.5% from the root of the vertical
tail.

If we take into account only strength and
minimum gage constraints then, after three
design iterations, the distribution of a material
shown in Figure 11 is found. The
characteristic section has a streamwise twist

angle, A, = -41.15x10™ radians; the volume

of structural material is V = 0.868421x10°
mm3.

When we include both the strength condition
and the stiffness requirement (streamwise
rotation is near zero), after four iterations the
distribution of material shown in Figure 11 is
found. The streamwise twist angle of the
characteristic section is A = +4.44x10™

o

radians. This angle is not quite zero, but it is
slightly positive and increases, rather than
decreases, effectiveness. The distribution
satisfies all imposed strength constraints and

has volume Vs = 0.876285x10° mm”. This
is only 0.9 % heavier than the design with
only a strength constraint.

This type of problem has also been
considered, independently, by Sensburg
and Tischler, in a study in which they used
ASTROS and laminate design to improve
the effectiveness of a vertical fin[9]. Their
results, based on more accurate flight loads
also indicate that lift effectiveness can be
greatly improved by redistribution and
reorientation of material.

Supersonic trim of a transport aircraft

Consider the problem of increasing the stiffness of the
low aspect ratio supersonic wing (previously shown in
Figure 5) to reduce the trim drag that occurs during
transition from subsonic to supersonic flight. A main
contributor to this drag is the elastic deformation
created by the deflection of elevons used to trim the
airplane in pitch. The stiffness constraint to address
this problem can be presented as a permissible value of
the difference between wing torsional deformations in
the subsonic and supersonic cruise modes. Figure 13
shows the distribution of this difference in torsional
deformation for the supersonic TU - 144. The problem
considered was the re-design of this wing (a problem
for which the results were not implemented).

In general, the re-design of a wing with such
stiffness requirements can be formulated as
follows. Take as a measure of design stiffness
the twist angle of the characteristic section
previously defined. It is required to increase
the design stiffness with a minimal weight
increase. We are required to find the
distribution of wing structural material that
satisfies strength conditions for all loading
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Figure 13 —Difference between
supersonic and subsonic twisting angles

conditions and provides a minimal difference
between twisting of the characteristic section
in the subsonic and supersonic flight phases
and has minimum mass. To solve the design
problem approximately, we do the following:

1. Assume that we know the optimal shape of
the wing middle surface, including
geometrical and aerodynamic twist and
curvature of the middle surface so that we
have minimum aerodynamic drag in
supersonic cruise.

2. Determine loads for all remaining load
cases. With these loads we find the
distribution of material satisfying only
strength requirements.

3. With subsonic and supersonic cruise (from
Step 1) we find a design that has a
minimal difference of  torsional
deformations of the characteristic section
at subsonic and supersonic flight.

Additional thickness for upper skin [mm]

Variant 1

bt |

Figure 14 - Distribution of added
mass on upper wing skins

The additional material can be added to skin panel and
spar elements, but should first be placed in zones with
large positive values of differences between Mohr
integrals calculated for this problem.

There are other less effective ways to handle this
problem. These include

1. Use a more powerful engine; however, in
the cruise mode its additional thrust is not
necessary; also it will not remove control
problems that occur at transition to a
subsonic speed.

2. Transfer part of the fuel to tail tanks
elsewhere to displace the center of mass
aft; this has several drawbacks. First of
all, the useful internal volume of the
airplane is decreased. For a fast fuel
transfer, powerful (usually - some tens of
kilowatts) fuel pumps are required with
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high output fuel lines. This makes the
airplane fuel system and power supply
system much heavier and more costly. In
addition, in an emergency situation we
must decrease speed from supersonic to
subsonic quickly. Then it is necessary to
dump transferred fuel to prevent
longitudinal instability of the airplane in
the subsonic region because of the aft
position of the center of mass. Despite
these apparent disadvantages, this method
is often used.

We can use canards. However, flight tests
demonstrate that the efficiency at subsonic speed is
poor and longitudinal balance problems remain. In
addition, the spin property of the airplane with a
canard configuration is worse than other airplanes.
Also, an airplane with a canard configuration has
poor dynamic stability since there is difficulty
suppressing short-period oscillations.

The maximum additional material allowed is 1% of the
original structural weight. Figures 14 and 15 show the
results of placing additional material in the skin panels
for stiffening such that the difference between the
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Figure 15 — Distribution of added
mass in lower skins

subsonic and supersonic twist is minimized.

This process is very rapid and has far reaching
effects on the design.

Clearly, the simplicity of an effective optimization
method can help a design team sort through feasible
solutions to a serious design problem.

Conclusion

Our procedure, implemented by a PC software package
known as DRACO developed by the first author or by
alternative optimization techniques, provides the ability
to perform high-level trades early in the design process.
Two illustrative examples have been discussed to show
the level of input detail required for the process. This
approach also places structural topology with
aeroelastic  considerations on an equal, multi-
disciplinary level with the usual aerodynamic and
performance considerations that drive conceptual
design. The results of this process can then be given to
high fidelity optimization/analysis packages such as
ASTROS for further refinement at the detailed design
level - if the design actually progresses that far. The
result will be a higher fidelity, higher quality effort
capable of identifying structural and weight problems
early, while providing reliable design information.

This study illustrates how optimality criteria, coupled
with effective finite element analysis, can bring
valuable information to the initial structural design
effort. This information allows the design team the
opportunity to review and debate design decisions
made by configuration specialists early so that good
decisions are made. Using this technique, it is no
longer necessary to wait to consider requirements such
as aeroelasticity or other stiffness related performance
constraints.
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